

MAPA DE ROCAS Y MINERALES INDUSTRIALES E. 1:200.000 HOJA 74 (PUEBLA DE GUZMAN) Y HOJA 75 (SEVILLA)

<u>Instituto Tecnológico</u> <u>GeoMinero de España</u>

MAPA DE ROCAS Y MINERALES
INDUSTRIALES, E. 1: 200.000
Hoja 74 (Puebla de Guzmán) y
Hoja 75 (Sevilla)

Estas hojas y Memoria han sido realizadas por INVESTIGACIONES GEOLOGICAS Y MINERAS, S.A. (INGEMISA), bajo normas, dirección y supervisión del Instituto Tecnológico y GeoMinero de España (I.T.G.E.), habiendo intervenido en ellas los siguientes técnicos:

Geología de campo y gabinete:

José María Rodríguez Morales

Francisco Javier Roldán García

Investigaciones Geológicas y Mineras, S.A.

Los estudios analíticos y ensayos se han realizado en los laboratorios de Geolab, Geocisa y en el Departamento de Geología de la Universidad de Sevilla

La dirección y supervisión: Sección de Rocas y Minerales Industriales Dirección de Recursos Minerales Instituto Tecnológico GeoMinero de España

DOCUMENTACION COMPLEMENTARIA

La siguiente documentación se encuentra en el I.T.G.E., a disposición de los usuarios de las hojas:

- Fichas-inventario de explotaciones e indicios
- Mapas de situación de explotaciones e indicios, E. 50.000
- Situación de explotaciones e indicios sobre fotografía aérea
- Informe de laboratorio
- Informe fotográfico

INDICE

INDICE

		Pág.
1	ANTECEDENTES	1
	1.1. ANTECEDENTES	2
	1.1.1. <u>Situación Geográfica</u>	2
	1.1.2. <u>Documentación utilizada</u>	4
2	SINTESIS GEOLOGICO-MINERA	6
	2.1. INTRODUCCION	7
	2.2. SITUACION GEOLOGICO-MINERA	7
	2.3. ESTRATIGRAFIA	8
	2.4. TECTONICA	22
	2.5. ROCAS IGNEAS	25
	2.6. MINERIA	28
3	DESCRIPCION DE EXPLOTACIONES E INDICIOS	30
	3.1. ALBERO	31
	3.2. ARCILLAS	33
	3.3. ARENAS	38
	3.4. ARENAS SILICEAS	41
	3.5. CALIZAS Y DOLOMIAS	44
	3.6. CAOLIN	49
	3.7. CUARZO	53
	3.8. DIABASAS	55
	3.9. ESCORIA	58
	3.10 ESQUISTO	60
	3.11 FLUORITA	62
	3.12 GRAFITO	64
	3.13 GRANITOS	67
	3.14 GRAVAS, ARENAS Y ZAHORRAS	73
	3.15 MARMOLES	78
	3.16 OCRES	82
	3.17 PIROCLASTOS	84
	3.18 PIZARRAS	87
	3.19 PORFIDOS	91
	3.20 RIOLITA Y TRAQUITA	92

	<u>Pág.</u>
3.21 WOLLASTONITA	95
4 IMPACTO AMBIENTAL	100
4.1. INTRODUCCION	101
4.2. VISIBILIDAD E IMPACTO AMBIENTAL	102
4.3. IMPACTO POR RUIDO Y POLVO	104
4.4. VIBRACIONES POR EXPLOSIVOS	105
4.5. IMPACTO SOBRE LAS AGUAS SUBTERRANEAS	
Y SUPERFICIALES	105
4.6. VEGETACION	107
4.7. AREAS PROTEGIDAS	107
5 VALORACION MINERO-INDUSTRIAL	109
5.1. DISTRIBUCION DE LA PRODUCCION	110
5.2. USOS Y DESTINOS DE LA PRODUCCION	113
5.3. VALORACION	121
6 RESUMEN Y CONCLUSIONES	123
6.1. EXPLOTACIONES	124
6.2. SUSTANCIAS	126
6.3. CONCLUSIONES	126
7 BIBLIOGRAFIA	127
INDICE DE ANEXOS	
ANEXO I LISTADO DE EXPLOTACIONES E INDICIOS ANEXO II LISTADO DE EXPLOTACIONES E INDICIOS NO INVENTANEXO III LISTADO DE EMPRESAS EXPLOTADORAS	ARIADOS

ANEXO IV.- LISTADO DE CENTROS DE TRANSFORMACION

1.1. ANTECEDENTES

1.1.1. <u>Situación Geográfica</u>

Las hojas a escala 1:200.000, números 74 y 75 correspondientes al Mapa de Rocas y Minerales Industriales de España, están situadas en el SO de la Península Ibérica. Ocupan la parte septentrional de las provincias de Huelva y Sevilla y un pequeño segmento meridional de la Provincia de Badajoz, siendo el límite occidental la frontera con Portugal

En el ámbito de éstas hojas se pueden distinguir tres tipos de relieve diferentes que se describen de norte a sur. En el tercio superior de las hojas, se encuentran las estribaciones más occidentales de Sierra Morena, con alturas cercanas a los 1.000 metros, que constituyen las Sierras de Aracena y Aroche. En la parte intermedia de las hojas, existe un relieve alomado, con abundante vegetación de monte bajo, interrumpida a veces por el fuerte encajamiento de la red fluvial. Las alturas oscilan entre los 200 y 400 metros sobre el nivel del mar. Por último el tercio inferior corresponde a la Depresión del Guadalquivir, con la zona de marismas de Huelva.

Los cauces fluviales de mayor entidad son el Guadiana, Guadalquivir, Odiel y Tinto.

La ciudad más importante es Sevilla. Otras con núcleos de población superior a 5.000 habitantes son: Sanlúcar la Mayor, La Palma del Condado, Gibraleón, Nerva, Valverde del Camino, Aracena, Cortegana, Aroche, Trigueros, Bollullos Par del Condado, Olivares, La Algaba, San Juan de Aznalfarache, Torreblanca, San José y Alcalá del Río.

La red básica de comunicaciones está formada por la autopista Sevilla-Huelva y las nacionales Huelva-Badajoz, Sevilla-Mérida y Sevilla-Lisboa. En cuanto a ferrocarriles existen tres vías principales que, partiendo de Sevilla se dirigen a Huelva, Zafra-Mérida y Córdoba-Madrid.

DISTRIBUCION DE HOJAS A ESCALA 1:50.000, DE LAS HOJAS № 74 (PUEBLA DE GUZMAN) Y № 75 (SEVILLA) A ESCALA 1:200.000

Nº 74	Nº 75			
N <u>o</u> 915 Rosal de la Frontera	Nº 916 Aroche	Nº 917 Aracena	Nº 918 Santa Olalla del Cala	Nº 919 Almadén de la Plata
Nº 936 Paymogo	Nº 937 Bl Cerro de Andévalo	Nº 938 Zalamea La Real	Nº 939 Castillo de Las Guardas	Nº 940 Castilblanco de los Arroyos
Nº 958 Puebla de Guzmán	Nº 959 Calañas	Nº 960 Valverde del Camino	Nº 961 Aznalcollar	Nº 962 Alcalá del Río
NO 980 San Silvestre	Nº 981 Gibraleón	Nº 982 La Palma del Condado	Nº 983 San Lúcar La Mayor	Nº 984 Sevilla

1.1.2. <u>Documentación utilizada</u>

La base bibliográfica utilizada ha sido principalmente la siguiente:

- 20 hojas a escala 1:50.000 del Plan MAGNA.
- 2 hojas a escala 1:200.000 de síntesis geológica.
- 2 hojas a escala 1:200.000 de síntesis metalogenética.
- Síntesis geológica de la Faja Pirítica del SO de España.
- Estudio para el aprovechamiento industrial de las arcillas del Neógeno de la Depresión del Guadalquivir.
- Inventario Nacional de Balsas y Escombreras.

Trabajos sectoriales por sustancias.

Todos estos trabajos están registrados en el Servicio de Documentación del I.T.G.E.

Al mismo tiempo se han consultado todas las tesis de Doctorado, tesis de licenciatura y artículos publicados en los últimos años que no están recogidos en la bibliografía de los informes anteriormente reseñados. Todos estos trabajos de investigación se entiende que están íntimamente relacionados con la geología, minería y canteras de las hojas objeto de estudio. En el capítulo de Bibliografía figura una relación exhaustiva de los mismos.

2 SINTESIS GEOLOGICO-MINE	RA
2. SINTESIS GEOLOGICO-MINE	
Z. SINIESIS GEOLOGICO-MINE	

2.1. INTRODUCCION

La síntesis geológico-minera llevada a cabo para la elaboración del Mapa único de Puebla de Guzmán y Sevilla (74 y 75), a escala 1:200.000, ha integrado un total de 20 hojas/mapas a E.1:50.000.

Esta síntesis consigue aunar, mediante los datos disponibles hasta la actualidad, un conjunto de unidades geológicas distribuidas por zonas de acuerdo con la división en dominios del Macizo Ibérico. Para ello ha sido necesario la revisión, actualización y corrección de datos en campo, de un conjunto de grupos litológicos.

2.2. SITUACION GEOLOGICO-MINERA

El marco geológico al que pertenecen las hojas de Puebla de Guzmán y Sevilla es variado. De acuerdo con la información más reciente de división de dominios geológicos puede decirse, que estas hojas están adscritas de Norte a Sur a las zonas de: Ossa-

Morena, Pulo do Lobo, Sur-Portuguesa y Depresión del Guadalquivir. Las tres primeras pertenecen a la parte más meridional del Macizo Ibérico, la última constituye una cuenca individualizada, entre la Meseta y las Cordilleras Béticas.

2.3. ESTRATIGRAFIA

De acuerdo con la división por dominios mencionada en el epígrafe anterior, a continuación se hace una descripción resumida de los rasgos estratigráficos de las zonas y unidades litoestratigráficas que constituyen las hojas.

ZONA DE OSSA-MORENA

Está claramente diferenciada dentro del Macizo Ibérico, si bien han sido objeto de diversas interpretaciones, la naturaleza y significado de sus límites. Existen también numerosas controversias por parte de un gran número de investigadores, en cuanto a los encuadres paleogeográfico y geodinámico de sus series integrantes, así como los procesos metamórficos e ígneos que en élla se registran.

Desde el punto de vista descriptivo, el registro estratigráfico de la Zona de Ossa-Morena en las hojas de estudio, queda enmarcado en un conjunto de bandas tectónicas. Dichas bandas se interpretan como unidades geológicas (litoestratigráficas) diferentes, con sus series o secuencias sedimentarias parcialmente independientes.

- Unidad Macizo de Aracena

Dicha Unidad se ha subdividido en dos, denominándose por su morfología cartográfica: Cuña de Cortegana y Cuña de Fuenteheridos.

- Cuña de Cortegana

Esta constituida por neises cuarzo-feldespáticos, neises migmatíticos y grafitosos, granitos de anatexia, mármoles, rocas de silicato cálcico y ortoanfibolitas, el metamorfismo de estos materiales es de grado medio a alto; también hay metavolcanitas ácidas, filitas y metabasitas de grado bajo. La edad de estos materiales se considera Precámbrico Superior-Cámbrico Inferior.

A continuación se hará una breve descripción de las litologías más significativas y las que tienen incidencia directa con la aparición de rocas o minerales de interés industrial.

- Neises cuarzo-feldespáticos (22): son rocas de origen volcánico con lechos feldespáticos y/o biotíticos. Dentro de ellas hay intercalaciones de ortoanfibolitas, rocas carbonatadas, neises migmatíticos y grafitosos y ortoneises. Los neises grafitosos (neises de Fuente del Oro) son de componente más detrítica (volcanosedimentaria) que aquéllos, con notable influencia en el depósito de materia orgánica, que pasa a grafito por el metamorfismo existente.
- Calizas y mármoles (22a): afloran en bandas discontínuas que pueden alcanzar de 6 a 8 km de longitud por 1 km de anchura. Son de tonalidades blancas, grises y verdosas de gran vistosidad. Aparecen intercalados fundamentalmente, entre los neises cuarzofeldespáticos donde en ocasiones hay una transformación en rocas de silicatos cálcicos de gran pureza (wollastonita).

- Cuña de Fuenteheridos

Está formada por una sucesión de esquistos y cuarzoesquistos, en ocasiones grafitosos, con intercalaciones de areniscas, anfibolitas y cuarcitas negras (Formación La Umbría). Además existe una sucesión volcano-sedimentaria con una secuencia

inferior formada por volcanitas ácidas y carbonatos y otra superior de cineritas, tobas, lavas riolíticas y esporádicos niveles de carbonatos.

El metamorfismo es variable de bajo a muy alto grado. La edad está comprendida entre el Precámbrico Superior y el Cámbrico Inferior.

Las litologías de las rocas de posible interés industrial y su características, se describen a continuación:

- Metavolcanitas (21): son rocas de color verde, grano fino y por lo general esquistosas. Corresponden a lavas y tobas de composición básica a intermedia.
- Calizas y mármoles (21a): son de color grisáceo, blanquecino o crema, de grano fino y con esporádicas intercalaciones de láminas pelíticas. A veces son impuras con mezcla de metavolcanitas ácidas o básicas intercaladas.
- Unidad del Cubito

La mayor parte de los materiales que integran esta Unidad, son pizarras esquistosas, filitas y cuarcitas grafitosas. También aparecen metavolcanitas ácidas. Dicha Unidad alfora en la parte nord-occidental de las hojas de Puebla de Guzmán y Sevilla. Se le asigna una edad Ordovícico, con reservas.

Las litologías más significativas se describen a continuación:

- Esquistos, filitas y cuarzofilitas (20): es una sucesión eminentemente detrítica, con una incipiente influencia volcánica. Estos sedimentos presentan unas coloraciones grises, verdosas y moradas. Tienen abundante cuarzo de exudación.

- Metavolcanitas (20a): son rocas volcánicas de composición básica, aparecen en afloramientos pequeños difíciles de representar a la escala de trabajo. Sin embargo al N y NE de Aracena tienen gran difusión, donde aparecen intercaladas en materiales detríticos. Se presentan como rocas porfídicas formadas por megacristales de plagioclasa y anfíbol.

- Unidad de Cumbres

El Cámbrico-Ordovícico es una serie metasedimentaria que de muro a techo está constituida por los siguientes materiales:

- Calizas marmóreas (16a) en bancos de potencia decimétrica que intercalan niveles pizarrosos de poco espesor.
- Pizarras y areniscas (16) alternantes en bancos de 30 a 50 cm de espesor.
- Pizarras grises, verdes y moradas (Pizarras de Barrancos) (16). Se trata de una sucesión de pizarras y filitas moscovíticas con intercalaciones de rocas volcánicas. A veces las rocas volcánicas constituyen grandes coladas de rocas básicas, que pueden sobrepasar los 500 m de espesor. Se han detectado también rocas volcánicas ácidas, si bien éstas tienen escasa potencia y continuidad lateral. También exiten pequeños lentejones de carbonatos intercalados.
- Grauvacas y areniscas moscovíticas (Grauvacas de Sierra Colorada) (16). Sobre los materiales anteriores se sitúan en tránsito gradual, unas metaareniscas con abundante moscovita y muy bioturbadas. Presentan abundantes intercalaciones de pizarras.

El Silúrico-Devónico y el Carbonífero están formados por sucesiones eminentemente detríticas que se describen a continuación:

- Ampelitas y liditas (17). Constituyen una secuencia centimétrica de pizarras carbonosas y cuarcitas grafitosas. A techo de éstas suelen aparecer finos niveles de volcanitas ácidas. La potencia del conjunto no sobrepasa los 50 m.
- Esquistos rayados (18). Es una sucesión de esquistos de grano fino, algo micáceos, con algunos niveles arenosos de espesor milimétrico y grano fino.
- Microconglomerados, areniscas, pizarras y calizas (Flysch Terena) (19 y 19a). Este Flysch presenta una secuencia irregular de los materiales descritos, si bien las calizas aparecen en la parte alta de la serie. Estos niveles carbonatados son calizas marmóreas con abundantes restos de crinoides (encrinitas); a veces son conglomeráticas con cantos de rocas ígneas y metamórficas.

- Unidad de Herrerías

El Cámbrico está formado por la siguiente sucesión de materiales:

- Calizas y dolomías (11) de colores grises, beiges y blanquecinos. Presentan intercalaciones de pizarras de poco espesor y escasa continuidad lateral. La potencia oscila entre 100 y 200 m.
- Pizarras moradas y verdes (12), que a techo intercalan niveles de rocas volcánicas básicas. El espesor varía entre 200 y 500 m. Sobre éstas hay un episodio de limos y arenas finas moscovíticas.
- Espilitas (13). Sobre las anteriores destaca un conjunto de niveles volcánicos y volcanosedimentarios. En suma se trata de basaltos, tobas basálticas y esporádicas intercalaciones de pizarras. Las rocas volcánicas presentan tonalidades verde oscuras y moradas, son masivas y es frecuente la presencia de

estruturas almohadilladas. La potencia de éstas oscila entre 60 y 200 m.

El Ordovícico es fundamentalmente de composición detrítica y está formado por varias secuencias:

- Conglomerados (14), de cantos redondeados de calizas, areniscas y espilitas principalmente, sobre una matriz lutítico-arenosa.
- Cuarcitas (14). Se sitúan sobre los anteriores y el espesor oscila entre 40 y 50 m. Puntualmente se reconocen algunas pasadas de pizarras y microconglomerados en niveles centimétricos.
- Pizarras grises o verdosas (14), con cantos angulosos y aislados de cuarcitas en su seno.

El Devónico-Carbonífero está formado por una serie monótona de pizarras y areniscas (15), con algunos niveles conglomeráticos a la base. Las pizarras son de color gris y las areniscas de colores gris y marrón. La potencia total es de unos 800 a 1.000 m.

- Unidad de Arroyomolinos

Ocupa la esquina nororiental de la Hoja de Sevilla y está constituida por dos unidades, una de edad Precámbrico y otra Cámbrico.

La Unidad Precámbrico presenta una secuencia variable de sedimentos y de materiales volcánicos. Conforma una alternancia de grauvacas y pizarras, con esporádicas intercalaciones de cuarcitas negras, metabasitas y metavolcanitas ácidas (Sucesión de Tentudía). Presenta un grado de metamorfismo bajo, al que se superponen localmente los efectos térmicos de los cuerpos graníticos que la intruyen.

- Pizarras y areniscas (9). Constituyen una alternancia decimétrica. Localmente aparecen bancos de cuarcitas negras de espesor métrico.
- Metavolcanitas (9 a). Las de carácer ácido son compactas, de color blanquecino; en ocasiones presentan un bandeado fino que debe corresponder a materiales lávicos o tobáceos. Las de carácter básico son escasas y puntuales, de potencia métrica y escasa continuidad lateral; son rocas de color verde oscuro, la roca original debe correponder con una diabasa o una toba de composición básica.
- Complejo volcánico de Bodonal (porfiroides de Bodonal). Es un conjunto de volcanitas y rocas asociadas. Incluye riolitas, tobas cristalinas, tobas finas, pizarras cineríticas y pórfidos riolíticos.

La Unidad de edad Cámbrico hacia la base la constituye una serie compleja, formada por rocas ácidas intercaladas entre pizarras, filitas y cuarcitas de colores gris-azulados (10). Encima hay un conjunto detrítico-carbonatado de más de 400 m de espesor; las calizas (10 a), son mármoreas de tonos gris, blanco y marrón, intercaladas entre éllas hay pizarras verdes y grises, areniscas y cuarcitas; con frecuencia aparecen intercalados niveles de volcanitas ácidas y básicas (10 b). Sobre el conjunto anterior hay una potente serie de pizarras y areniscas grisverdosas, con niveles de rocas volcánicas ácidas intercalados; el espesor de la serie es de 500-600 m.

- Unidad de Benalija

Aflora en la esquina nororiental del Mapa de Sevilla, junto al Embalse del Pintado. Está representada por un conjunto de rocas detríticas, carbonatadas y volcánicas.

La edad de esta Unidad se interpreta como Cámbrico-Ordovícico. En ésta hay varias sucesiones de rocas sedimentarias y volcanosedimentarias que, en áreas próximas y fuera de la Hoja, se asocian a formaciones diferentes (Malcocinado, Torreárboles, etc.).

En suma la secuencia comienza con una alternancia centimétrica de pizarras y areniscas (8) de color oscuro, con algunas intercalaciones volcánicas a techo; el espesor deducido del conjunto es del orden de 1.200 m. Por encima de los materiales anteriores, existe un complejo volcánico integrado por tobas andesíticas y conglomerados volcanoclásticos; las tobas son de color claro, los niveles lávicos son de color verdoso y textura porfídica; los conglomerados tienen cantos centimétricos de cuarzo, rocas ígneas y cuarcitas negras, la matriz es tobácea.

Por encima de los materiales anteriores y en discordancia, existe una serie de pizarras y areniscas verdosas y blancas respectivamente. Esta secuencia se hace más pizarrosa a techo (granodecreciente).

Sobre los sedimentos anteriormente descritos, aparece una secuencia detrítico-carbonatada en aparente concordancia, los niveles basales están constituidos por pizarras, areniscas y calizas (8a). Los niveles superiores son calizas con estructuras colíticas y estromatolíticas, para culminar con calizas marmóreas masivas.

Sobre las calizas anteriores se dispone una sucesión de pizarras verdes, a veces moradas, con algunas intercalaciones carbonatadas y pasadas de areniscas y volcanitas básicas. Por encima de estos sedimentos se dispone un conjunto de rocas volcánicas básicas espilitizadas, de color oscuro verde a violáceo; presentan una textura porfídica-fluidal; la potencia máxima deducida es del orden de 400 m.

- ZONA PULO DO LOBO

Anteriormente había sido considerada como un dominio dentro de las zonas Surportugesa y/u Ossa-Morena. En época reciente, una gran parte de los investigadores que la han estudiado, han encontrado rasgos oceánicos en algunos de los elementos que constituyen sus series, por lo que se ha considerado como una Zona independiente entre las dos citadas.

Este dominio está representado por cuatro formaciones: Acebuches (23a), Pulo do Lobo, Ribeira de Limas y Santa Iría (23).

- Acebuches. Está Formación constituida por ortoanfibolitas de grano grueso, de grano fino y esquistos verdes. Estos materiales pertenecen a una misma secuencia de volcanismo básico. Las ortoanfibolitas son rocas de color verde oscuro bien esquistosadas. Hay un tránsito gradual entre las de grano fino y grueso y de éstas a las pizarras de la F. Pulo do Lobo. esquistos Los verdes, son rocas masivas. estratificadas y de textura, a veces ofítica; los bancos masivos se sitúan en la base con neto carácter volcánico, después alternan esquistos cloríticos y filitas. La potencia que se estima es superior a 400 m.
- Formación Pulo do Lobo. Está representada por una alternancia de filitas y cuarcitas micáceas. Las filitas son rocas esquistosas de color gris o gris oscuro. las cuarcitas micáceas presentan una alternancia de lechos cuarcíticos y pelíticos de colores grisáceos. La potencia total puede ser superior a 400 m.
- Formación Ribeira de Limas. Se caracteriza por una alternancia de grauvacas cuarzosas y esquistos grauváquicos, con pizarras a techo. El espesor de la serie rebasa los 400 m.
- Formación Santa Iría. La constituye una alternancia de areniscas amarillentas y pizarras gris-negruzcas, en bancos decimétricos y centimétricos respectivamente. Existen pequeños

niveles de volcanitas ácidas intercaladas. El espesor total puede superar los 400 m.

- ZONA SUR PORTUGUESA

Ocupa el Suroeste de la Península y se distribuye por la parte central de las hojas de Puebla de Guzmán y Sevilla.

El registro volcánico y sedimentario de esta Zona, comprende rocas del Devónico Superior, Carbonífero y Pérmico que aparecen distribuidas en tres unidades mayores que de Norte a Sur son las siguientes: Faja Pirítica, Dominio del Flysch del Baixo Alentejo y Dominio del Suroeste Portugués. El último Dominio citado sólo aflora en Portugal y el Flysch del Baixo Alentejo discurre al Norte de San Silvestre de Guzmán y sus facies son similares a las de la Faja Pirítica, por lo que no se han separado ambos dominios en el mapa.

acuerdo con las relaciones entre tectónica sedimentación caben separar dos tipos de secuencias mayores, que a su vez reflejan dos etapas sucesivas en la evolución orogénica de esta Zona. La primera secuencia está representada por el Complejo Volcano-Sedimentario (C.V.S.), que se sitúa en la parte media-septentrional de esta Zona. Está formada por un conjunto de rocas volcánicas (lavas, piroclastos y epiclastos) en una asociación bimodal (riolitas, basaltos y en menor proporción rocas intermedias), interestratificadas con sedimentos. En esta secuencia se encuentran las mineralizaciones de sulfuros masivos de : Riotinto, Aljustrel, Tharsis, Neves Corvo, etc., asociadas genéticamente con las volcanitas ácidas. La segunda secuencia ocupa la parte meridional de la Zona y está representada por una potente serie siliciclástica, que constituye el denominado Grupo Culm.

A continuación se describen los principales conjuntos litológicos, de muro a techo.

- Pizarras y cuarcitas (24). Están bien representadas en el anticlinal de Puebla de Guzmán. La edad es Devónico. Las pizarras constituyen la litología más frecuente, van de arenitas finas a lutitas. Son a veces sericíticas, de color variado de gris oscuro a marrón rojizo. Presentan una fuerte esquistosidad. Las cuarcitas en capas y lentejones aparecen interestratificadas entre las pizarras; son de grano fino y colores claros; rara vez afloran con más de 20-30 m de espesor y 100 m de corrida. Ocasionalmente aparecen niveles de conglomerados cuarcíticos y pequeños afloramientos de calizas y calcoesquistos, que no rebasan los 8 a 12 m de espesor.
- Pizarras, cuarcitas y grauvacas (25), localmente volcanitas. Las rocas más abundantes son pizarras grises muy esquistosas. Alternan con éllas, niveles más o menos arenosos de espesores milimétricos a centimétricos. Las cuarcitas son grises y blancas y se presentan en estratos de 2 cm a 3 m de espesor. Las grauvacas aparecen en niveles de 3 cm a 3 m de potencia, color verde y grano fino a medio. En la parte alta de la serie hay brechas intraformacionales, con cantos de cuarcitas y pizarras en una matriz pizarrosa; encima se localizan niveles de lavas, tobas, jaspes y pizarras moradas similares a las del C.V.S. que se describirá más adelante.
- Complejo Volcano-Sedimentario. Está constituido por rocas volcánicas ácidas, intermedias y básicas, con niveles detríticos intercalados. Se reconocen al menos tres fases de volcanismo, donde cada pulsación origina una sucesión variable de productos ácidos, básicos e intermedios; dada la similitud de sus productos, las descripciones litológicas se harán de manera común. Desde el punto de vista estratigráfico, el C.V.S. varía de unas zonas a otras en la Faja Pirítica en función de: la proximidad o lejanía de los focos volcánicos, extensión de las erupciones y por los cambios en las facies litológicas de carácter volcánico. El espesor del C.V.S., asimismo, es muy variable de unos puntos a otros, estimándose como potencia máxima unos 800 metros.

- . Volcanitas de carácter ácido-intermedio (28). Las manifestaciones volcánicas empiezan por emisiones importantes de rocas piroclásticas de granulometría variada, constituidas por aglomerados, brechas y tobas. Los aglomerados y brechas están formados por cantos lávicos hetereométricos de 10 a 40 cm, son de naturaleza ácida. Las lavas ácidas son de colores variados, blancos, rosados o gris-verdoso; la composición es riolítica y dacítica. Las lavas intermedias son tranquitas y andesitas, y localmente pueden llegar a ser básicas. Los niveles sedimentarios asociados a las rocas volcánicas, tienen potencia y extensión variable, corresponden a diversos tipos de pizarras.
- . Volcanitas de carácter básico (26). Generalmente aparecen sobre el volcanismo ácido, pero cuando éste falta pueden apoyarse directamente sobre sedimentos detríticos. Está constituído por lavas (espilitas y basaltos) de grano fino a medio, son muy cristalinas y por lo tanto poco porfídicas, a veces presentan aspecto brechoide. Las coloraciones son verde oscuro en corte fresco y pardo rojizas meteorizadas. Se reconocen frecuentes estructuras almohadilladas de tamaño decimétrico. También existen rocas piroclásticas asociadas de carácter básico (brechas, aglomerados y tobas). Interestratificadas con las lavas y tobas básicas aparecen en estratos de 1 a 50 m de espesor, pizarras grises, muy silíceas, y niveles de jaspes y cherts. La potencia del conjunto puede alcanzar 500 m.
- . Pizarras, tobas y tufitas (27). Este conjunto litológico lo componen esencialmente pizarras gris oscuro a negras, dentro de las cuales se interestratifican niveles de tobas finas y tufitas, con esporádicos lentejones de jaspes y cherts de escala métrica y colores grises y rojizos. La potencia máxima estimada es de 400 metros.

⁻ Pizarras y grauvacas (Grupo Culm) (29). Afloran al Sur del C.V.S. y en el núcleo de las estructuras sinclinales que dejan los materiales inferiores. Constituyen una potente

secuencia superior a 700 m de espesor, donde la parte basal de la sucesión es más pelítica que la superior. El conjunto es una secuencia alternante de pizarras y grauvacas, grises y verdes, a veces rojizas, con esporádicos niveles de conglomerados intercalados; los fragmentos líticos están constituídos por pizarras, cuarcitas y rocas volcánicas de diversa naturaleza. Los estratos suelen tener un espesor de 1 a 20 cm, aunque pueden alcanzar los 2 m de potencia y tener corridas de varias decenas de metros.

- Conglomerados (30). Afloran en la parte oriental de la Hoja de Sevilla. La edad debe estar comprendida entre Carbonífero y Pérmico. Estos materiales constituyen una parte de los sedimentos de la Cuenca del Viar. La secuencia es una sucesión detrítica formada por conglomerados de matriz arenosa rojiza, con pasadas de arcillas rojizas y arenas grisáceas, los primeros son más abundantes hacia la base y llegan a tener cantos de 10 a 20 cm de diámetro, que disminuyen a medida que se asciende en la serie.

DEPRESION DEL GUADALQUIVIR

Como contexto geológico global la Depresión del Guadalquivir se ha comportado como una cuenca de antepaís durante el Neógeno, donde las Zonas de Ossa Morena y Sur-portuguesa han actuado de zócalo rígido, y las Cordilleras Béticas de Orógeno.

En el ámbito de las hojas que son objeto de estudio, caben seis facies litológicas diferentes, a las que se le añade el Cuaternario, que sería común con otras zonas, pero que se trata aquí puesto que tiene mayor representación.

- Arenas silíceas y gravas (31). Sólo aparece un pequeño afloramiento en la parte oriental de las hojas. La edad debe corresponde al Messiniense Inferior. El espesor es variable y dismimuye hacia el Oeste, puesto que se trata de un abanico deltáico, que procedente de la Meseta se adentra en la Depresión

del Guadalquivir. Las arenas son blanco- amarillentas en corte fresco y rojizas en superficie. Están bien seleccionadas y el tamaño oscila entre arena gruesa y limo grueso, con clastos incluidos a veces de varios milímetros; más del 80% de los fragmentos son cuarcíticos, siendo el resto de pizarras, rocas volcánicas, etc. Las gravas presentan cantos de cuarzo, cuarcitas y otros materiales paleozoicos diversos, la matriz es arenosa de tonos amarillentos y rojizos; el diámetro de los cantos es variable pero el tamaño medio está entre 5-10 cm.

- Calcarenitas y areniscas calcáreas bioclásticas (32). Se disponen discordantes sobre el Zócalo Paleozoico. La base que está en contacto con el Paleozoico, suele presentar entre 50 y 100 cm de conglomerados gruesos con restos de lamelibránquios; las calcarenitas tienen una composición del 20 al 30% de fragmentos de fósiles y el resto son fragmentos carbonatados y siliciclásticos; según domine la composición de los fragmentos en un sentido u otro, se tendrá una calcarenita o bien una arenisca. En muchas ocasiones se advierten entre las areniscas pasadas de arenas y limos amarillos sueltos.
- Arcillas y margas azules (33). Genéticamente están ligadas éstas facies con las partes altas de la secuencia anterior. En líneas generales son depósitos que presentan una componente carbonatada superior a 20%-30%, se trata por tanto de arcillas y/o margas; presentan tonalidades crema, amarillenta y gris-azulado. El espesor de las mismas puede superar en algunos puntos los 250-300 m de espesor. En ocasiones se advierten pasadas centimétricas a decimétricas de limos amarillos. La edad es Messiniense Superior.
- Arenas, limos y areniscas calcáreas amarillas malos afloramientos por (34). Es un conjunto de estar generalmente labrado. Las facies son idénticas las anteriormente descritas. donde destacan las coloraciones amarillas intensas. De estas facies se obtiene el albero:formado por limos y arenas amarillas. En ocasiones, al Oeste de Sevilla

(Alcalá de Guadaira) entre los limos y arenas amarillas, hay niveles de areniscas calcáreas amarillas muy fosilíferas.

- Margas, limos y arenas silíceas (35). Estos sedimentos están íntimamente ligados entre sí y pertenecen a una secuencia de edad principalmente Plioceno. Está constituida por una alternancia de limos, arenas silíceas, amarillo-rojizas, y margas grisáceas muy arenosas, en una secuencia granocreciente, de manera que los sedimentos más finos están a la base de la serie. La potencia de estos materiales se incrementa considerablemente hacia el Sur, donde alcanza más de 500 m de espesor.
- Gravas, arenas silíceas y limos (36). Discordante sobre los materiales anteriores, se dispone esta sucesión siliciclástica, que presenta una coloración blanco-amarillenta en corte fresco y rojiza en superficie. Los cantos de las gravas son muy redondeados y cuarcíticos. Las arenas y los limos son seleccionados, con una componente silícea en casi todos los casos superior al 60-70%.
- Gravas, arenas y arcillas (37). Aquí se incluyen todos los sedimentos de origen aluvial y coluvial y los derrubios de ladera. Especialmente desarrollados están los aluviales (terrazas) del Río Guadalquivir, que son asiento de innumerables extracciones de áridos.

2.4. TECTONICA

Los materiales del área objeto de estudio, han sufrido los efectos de varias etapas tectogenéticas durante el Precámbrico Superior (Orogenia Cadomiense), durante el Paleozoico Superior (Orogenia Hercínica), y durante el Neógeno-Cuaternario (Orogenia Alpina).

La Orogenia Cadomiense, afecta sólo a los materiales precámbricos, y se detecta donde ellos afloran, en el anticlinal

Olivenza Monesterio y en el Macizo de Aracena. Los procesos asociados a esta Orogenia son fundamentalmente de tipo ígneo y metamórfico, sin que se observe una estructuración acusada de los materiales. Se conocen diversas manifestaciones finiprecámbricas, como las representadas por las secuencias volcánicas y/o volcanosedimentarias de dicha edad, que son de carácter calcoalcalino, y que se suponen asociadas a un margen activo de tipo Andino y/o Arco Isla. Existe también un plutonismo de esa misma edad y quimismo, que se interpreta como un magmatismo sinorogénico, representado dentro del área de estudio. por el granito de Pallarés en el borde sur del anticlinorio Olivenza-Monesterio. Igualmente existen evidencias de procesos de metamorfismo regional finiprecámbricos en la estructura antes mencionada.

La estructuración finiprecámbrica es poco representativa a escala regional; se detecta una discordancia angular acusada, con cantos estruturados de materiales precámbricos.

La dirección, vergencia y características de la deformación finiprecámbrica, es actualmente desconocida.

La Orogenia Hercínica, es la responsable de la estructuración fundamental de los materiales del zócalo y se acompaña de una serie de procesos deformacionales y plutonometamórficos que se analizarán a continuación.

La deformación se inicia en condiciones dúctiles y origina primero pliegues en ocasiones tumbados, de dirección NO-SE (fase I); le sucede una etapa de cizallamiento dúctil durante la cual se produce la formación de cabalgamientos y mantos de igual dirección y vergencia (fase II). Las últimas estructuras dúctiles son pliegues subcoaxiales con los anteriores, pero de plano axial más verticalizado (fase III).

La evolución frágil se manifiesta por un conjunto de fallas de desgarre con movimiento sinestral, muy bien representadas en el borde Sur del Macizo de Aracena (Zona de Cizalla Suribérica).

Como resultado de todo éllo, se produce la actual compartimentación del Orógeno, y la distribución de las distintas unidades en el borde Sur de la Zona Ossa Morena.

Tanto en las estructuras dúctiles como frágiles, se observa que la deformación tiene una componente rotacional sinestral que se interpreta como el resultado de un proceso de convergencia oblícua.

Asociado a estos procesos deformacionales se desarrolla un metamaorfismo regional en condiciones por lo general de bajo grado. En algunos puntos el metamorfismo alcanza condiciones de alto grado, como en el Macizo de Aracena, que se supone es inducido por el ascenso de masas plutónicas básicas y/o básicas-intermedias (plutonometamorfismo).

Durante la Orogenia Hercínica, se produce también la intrusión de numerosos cuerpos plutónicos de naturaleza variada (ácida a básica), como son todos los del borde septentrional de la Zona Sur-Portuguesa y otros menores que afloran en el Macizo de Arena y en el Anticlinorio Olivenza-Monesterio.

Otras rocas ígneas asociadas a la Orogenia Hercínica, son las rocas volcánicas de la Zona Sur-Portuguesa (complejo volcano-sedimentario), que se interpretan como un magmatismo sinorogénico de tipo arco isla.

La Orogenia Alpina es la responsable de la configuración y relleno de la Cuenca del Guadalquivir. Como contexto geológico global se ha comportado como una cuenca de antepaís durante el Neógeno. Dicha Cuenca está situada entre el frente de una cadena montañosa al Sur (Cordilleras Béticas) y el

Cratón adyacente al Norte (Meseta Ibérica). Esta cadena montañosa ha sufrido a lo largo del Neógeno un emplazamiento desde posiciones orientales hacia partes más occidentales, determimando una colisión entre continentes en un proceso de convergencia oblícua. Debido al proceso de colisión o convergencia, la Cuenca del Guadalquivir adquiere una morfología triangular, alargada en la dirección ENE-OSO.

Los materiales que rellenan la citada Depresión, pertenecen a dos etapas diferentes en la evolución tectónica y sedimentaria del Neógeno. Por un lado las unidades alóctonas, no aflorantes en las hojas de estudio, y por otro las autóctonas. Parte de estas últimas están presentesen las citadas hojas y registran los últimos rellenos de la Cuenca entre el Messiniense y el Pliocuaternario.

2.5. ROCAS IGNEAS

En este epígrafe se tratan sólo y exclusivamente las rocas plutónicas y filonianas, las rocas volcánicas han sido descritas en la Zona Sur-Portuguesa.

ROCAS FILONIANAS

Son muy abundantes en las hojas de estudio, pero por la escasa representación cartográfica que presentan, no pueden ser cartografiadas en la mayoría de los casos.

Entre las rocas filonianas diferenciadas destacan los diques de pórfidos riolíticos (1), situados en la parte septentrional de las hojas. Afloran según varias alineaciones arrosariadas que originan relieves. Son rocas subvolcánicas porfídicas, con fenocristales centimétricos de cuarzo, feldespato potásico y plagioclasa, todos ellos en una matriz microgranuda de composición cuarzofeldespática rica en sericita.

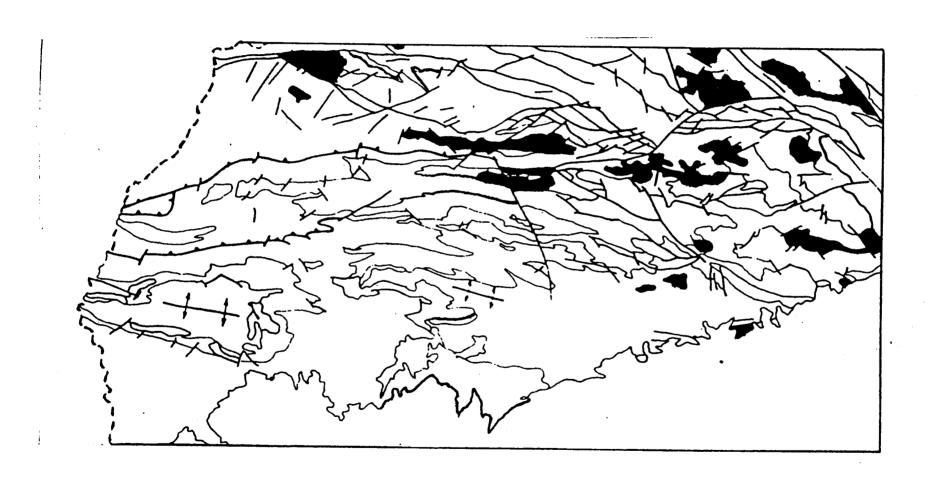
Otras rocas filonianas son los diques de cuarzo, se han diferenciado dos en cartografía por su tamaño. Uno aparece al SE de El Castillo de Las Guardas, alcanza 1 km de corrida y llega a tener 50 m de espesor. Es de dirección norteada. El otro aflora unos 18 kms al E de El Cerro de Andévalo, la dirección oscila entre N50 y 70E. Son de color blanco y aspecto lechoso. En superifice presentan óxidos de hierro, en parte procedentes de sulfuros diseminados, y óxidos de manganeso.

ROCAS PLUTONICAS

Constituyen un amplio campo composicional, desde gabros a granitos, pasando por diversos términos intermedios. Esta variabilidad en las facies litológicas, refleja la existencia de procesos de enriquecimiento en cuarzo que afectan esencialmente a los términos más básicos. Dichos procesos se han interpretado dentro de una sucesión con dos fases intrusivas, la primera básica seguida de otra ácida, que ha producido en las rocas intrusivas previas, fenómenos de hibridación.

En ocasiones, rocas de quimismo diferente se ponen en contacto mediante fracturas, otras veces existe una serie de rocas de transición entre éllas.

Gabros (3). Además de las rocas básicas (diabasas) que aparecen asociadas a los materiales volcanosedimentarios de la Faja Pirítica, existen dos bandas de rocas plutónicas básicas, cuyos límites están controlados por la téctonica tardihercínica de fractura. La banda meridional se extiende desde Burguillos y pasa al Sur de El Castillo de Las Guardas. La banda septentrional más ancha y de mayor corrida, se sitúa próxima y al Norte de la anterior. Estos afloramientos principalmente básicos están constituidos por hornbléndicos y en ocasiones piroxénicos también. Existen afloramientos menores asociados de dioritas, gabro-noritas y rocas ultrabásicas.


Los gabros presentan una estructura brechoide o bien bandeada debida a una alternancia entre minerales leucocráticos y melanocráticos. En líneas generales la composición química es la siguiente: 50%-80% de plagioclasa, 35-15% de anfíboles y 0%-5% de cuarzo y menas metálicas, también aparecen de forma irregular, biotita, piroxenos, olivino, etc.

- Tonalitas-dioritas (4). En este grupo coexisten dos facies, la más abundante de composición intermedia (cuarzodioritas-tonalitas) y otra de composición diorítica. Los afloramientos más representativos están en Santa Olalla del Cala y al Norte de El Castillo de Las Guardas.
- . Tonalitas-cuarzodioritas. Son rocas granudas de grano mediogrueso, en las que se reconocen biotitas y anfíboles con ligera tendencia fluidal. Los minerales principales son: plagioclasas, biotita, hornblenda verde y cuarzo.
- . Dioritas. Rocas gris-azuladas de textura granuda de grano medio, con proporciones de anfíbol y biotita superiores a las anteriores.
- Granodioritas (5). Afloran principalmente entre las dos bandas de gabros antes reseñadas. La composición mineralógica más generalizada es: 40% de cuarzo, 30% de plagioclasa, 20-25% de feldespato, de o a 5% de biotita y hornblenda y menas metálicas dispersas. En numerosos casos hay mezcla de facies entre éstas y los granitos y tonalitas.

El ortoneis de Gil Márquez es una granodiorita orientada que metamorfiza a las pizarras de la Zona del Pulo do Lobo. Es una roca granuda de tamaño de grano medio a grueso y textura cataclástica.

- Granitos (6). Aparecen asociados indistintamente a varias zonas (Ossa Morena, Pulo do Lobo y Surportuguesa). Tienen una disposición cartográfica alargada generalmente

ESQUEMA de MACIZOS GRANITICOS

paralela a las estructuras regionales, en pocas ocasiones producen aureola de metamorfismo de contacto, si en cambio, sus límites presentan cierta tectonización. Es común la aparición de abundantes diques porfídicos, aplíticos y diabasas. La composición mineralógica en orden de abundancia es: cuarzo, feldespato potásico, plagioclasa y biotita.

El granito del Berrocal tiene forma subelíptica; presenta una buena gradación de facies porfídicas de borde, a facies más o menos granudas centrales.

El granito de Castilblanco de los Arroyos es un macizo alargado en dirección NO-SE. Tiene una textura granular. La relación con los gabros es muy clara y está en continuación con éllos.

- Pórfidos graníticos (7). Están ampliamente representados al Sur de Aracena. Son posteriores a las rocas graníticas de acuerdo con sus relaciones espaciales. Tienen la misma composición mineralógica que los granitos. La textura es porfídica y a veces granuda. Los fenocristales de cuarzo presentan con frecuencia formas redondeadas.

2.6. MINERIA

La minería de sustancias metálicas que se lleva a cabo en la actualidad en el conjunto de las Hojas corresponde esencialmente a tres tipos de productos: bullión de oro y plata, sulfuros complejos y minería de hierro.

El bullión de oro y plata se extrae del Gossan de Cerro Colorado en Riotinto, se trata de una cobertera gossanizada (alteración por oxidación de sulfuros) sobre materiales volcánicos y volcanicosedimentarios de la Faja Pirítica.

Los sulfuros complejos polimetálicos (Cu, Pb y Zn) están en relación con materiales volcanosedimentarios. Los

yacimientos que se explotan en la actualidad se ubican en la Faja Pirítica y los explotan las siguientes compañías: Riotinto Minera (Riotinto), Tharsis (Alosno y Calañas), Almagrera (Sotiel), San Telmo (Cortegana) y Andaluza de Piritas (Aznalcollar). Hasta 1977 ha estado en funcionamiento la mina Maria Luisa (Granada) ubicada sobre materiales vulcanosedimentarios de la unidad Macizo de Aracena (Cuña de Fuenteheridos).

Las mineralizaciones de hierro (magnetita, hematies y limonita) más importantes se encuentra en Minas de Cala, son masas lenticulares que se encuentran intercaladas en una serie detrítica (pizarras y cuarcitas) con bandas de calizas, pertenecen a la Unidad de Herrerias.

Hay que señalar en la Unidad Macizo de Aracena y dentro de esta en la Cuña de Fuenteheridos, existe una importante mineralización de galena asociada al vulcanismo ácido con unas leyes considerables en plata.

Las explotaciones llevadas a cabo sobre esta sustancia están en la actualidad abandonadas.

3.- DESCRIPCION DE EXPLOTACIONES E INDICIOS

3.1. ALBERO (ALB)

De esta sustancia se han estudiado 4 estaciones todas éllas en la Hoja de Sevilla n2984 a E. 1:50.000, en los alrededores de Alcalá de Guadaira.

De estos puntos, dos están en explotación, números 219 y 220, y otros dos inactivos 218 y 223. En el área existen otras muchas zonas de extracción pero, por consideraciones medioambientales, han cesado su actividad.

La mayor representación de ésta sustancia se encuentra al E y SE de Sevilla, sobre las arenas amarillas y calcarenitas del Messiniense-Plioceno Inferior de la Depresión del Guadalquivir. El porcentaje de cuarzo está en torno al 20-35%, siendo el resto $\rm CO_3Ca$, una gran parte como fragmentos de fósiles y el resto como matriz y/o cemento.

CUADRO DE EXPLOTACIONES
ALBERO

NUM.	UND. LIT.	НОЈА	JA COORDENADAS ESTADO RESERVAS		PRODUCCION m³/año	uso		
			X	Y				
218	34	984	247,20	4.138,20	EB	В	-	03
219	34	984	247,20	4.137,70	EA	Α	400.000 *	03
220	34	984	247,20	4.136,55	EB	Α	-	03
223	34	984	246,90	4.136,60	EA	Α	-	03

CLAVES: EA = Explotación Activa, EI = Explotación Intermitente, EB = Explotación Abandonada, A = Altas, M = Medias, B = Bajas

El albero es un material muy tradicional en Andalucía Occidental en general y en Sevilla en particular, con un uso histórico y continuado para jardines, paseos y plazas de toros extrayéndose siempre en las inmediaciones de Alcalá de

Guadaira. Es en esta localidad donde han dejado profundos tajos y cicatrices producto de esta extracción intensiva.

Se ha señalado un litotecto de albero en los alrededores de Alcalá de Guadaira, sobre las areniscas calcáreas terciarias, donde están ubicadas todas las explotaciones de dicha sustancia, existentes en el área objeto del proyecto.

Además de los usos tradicionales, desde hace unos años se está empezando a utilizar como firme en el arreglo de caminos rurales por su alto índice de compactación y gran capacidad filtrante.

En estos momentos todo el albero se extrae de un único punto, número 219, propiedad de la empresa Hermanos Salguero, que en dos canteras muy próximas entre sí, extraen aproximadamente cuatrocientos mil metros cúbicos anuales. Se elaboran tres productos; albero en "rama", que es un material más cementado, se utiliza como subbase de caminos; albero normal y albero molido.

El grado de mecanización es muy alto pero muy simple, puesto que sólo se necesita el ripado de los frentes para el arranque del material, para posteriormente mediante pala cargadora y camión transportarlo bien al molino, si se trata de albero fino; bien al stock, si es albero normal, o bien directamente a la obra si se trata de albero en rama.

Los frentes de cantera son de dimensiones grandes con longitudes de ciento cincuenta metros aproximadamente, por siete metros de altura.

3.2. ARCILLAS (ARC)

Esta sustancia es de las que más puntos se han inventariado, 42 en total. De éstos, 16 corresponden a explotaciones en activo, 21 a canteras inactivas o abandonadas, cuatro están en situación de temporalidad y uno corresponde a un indicio.

Los afloramientos de arcilla se extienden desde Sevilla hasta Gibraleón, a lo largo de todo el borde inferior SO-NE, de la Hoja, ésto es, dentro del ámbito geográfico de lo que se conoce como la Depresión del Guadalquivir.

Son arcillas con un alto contenido en margas, pasando en muchos lugares a margas arcillosas. Son de colores gris azulados, cremas y blanquecinos. Presentan intercalaciones de limos y arena fina de color amarillento. La potencia puede variar en unos metros a varias decenas de éllos.

Las canteras con mayor producción están en la Hoja de Sanlúcar la Mayor $n\Omega$ 983 a E. 1:50.000, estaciones, 188, 189, 190, 191, 192, 193, 194, 195, 196. Le siguen las de la Hoja de La Palma del Condado $n\Omega$ 982 a E. 1:50.000, estaciones $n\Omega$ s 146, 157, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 175, 176 y 182. A continuación las de Alcalá del Rio $n\Omega$ 962 a E. 1:50.000, estaciones: 109, 111, 112, 113 y 139. Por último la Hoja de Sevilla $n\Omega$ 989 a E. 1:50.000, estaciones: 197, 207, 209, 210, 211, 212, 213, 214, 215.

Para esta sustancia se han señalado 6 litotectos sobre los sedimentos terciarios arcillosos de la Depresión del Guadalquivir, que por sus contenidos químicos y tecnológicos los hacen aptos para su uso como cerámica estructural.

Estos litotectos estan situados de O a E, sobre las localidades de Gibraleón, Trigueros, Niebla, La Palma del Condado, Manzanilla y Sanlúcar La Mayor.

CUADRO DE EXPLOTACIONES ARCILLA

85 109 111 112 113	29 33 33 33 33	958 962 962 962 962	X 653,75 237,70 237,60 237,80	Y 4.165,95 4.162,30	EB	В	_	00
109 111 112	33 33 33 33	962 962 962	237,70 237,60	4.162,30		В	_	00
111 112	33 33 33	962 962	237,60					09
112	33 33	962	-		IN	-	_	09
	33		237 80	4.157,40	EB	В	-	09
113		962	_0,,00	4.157,35	EB	В	_	09
	0.0	302	760,05	4.160,35	EA	Α	20.000	09
139	33	981	681,25	4.138,70	EA	Α	6.000	09
145	33	981	689,20	4.139,30	ΕI	Α	-	09
146	33	982	706,60	4.137,55	EB	М	-	09
147	33	982	747,60	4.139,70	EB	М	_	09
148	33	982	706,70	4.137,85	EB	М	-	09
149	33	982	717,80	4.139,65	EB	Α	-	09
150	33	982	694,70	4.143,90	EI	В	-	09
151	33	982	694,70	4.143,80	EB	М	-	09
152	33	982	694,60	4.143,75	EB	В	-	09
153	35	982	706,95	4.135,95	EI	Α	-	06
154	35	982	708,20	4.135,90	EB	A	-	09
155	35	982	707,35	4.135,95	EB	М	_	06
156	33	982	690,30	4.139,40	EA	Α	1.500	09
157	33	982	716,60	4.139,60	EB	A	_	09
158	33	982	690,45	4.141,30	EB	A	-	09
159	33	982	690,70	4.141,00	EB	A	_	09
175	33	982	717,30	4.139,60	EA	A	6.000	09
176	33	982	718,50	4.141,30	EΑ	A	25.000	09
182	33	982	691,70	4.138,50	EA	Α	_	09
188	33	983	736,90	4.141,20	EA	A	-	09
189	35	983	747,00	4.138,40	EA	A	20.000	09
190	33	983	736,10	4.141,60	EA	Α	30.000	09
191	33	983	728,20	4.141,50	EA	Α	14.500	09
192	33	983	735,55	4.141,25	EA	A	-	09

NUM.	UND. LIT.	НОЈА	COOR	DENADAS	ESTADO	RESERVAS	PRODUCCION Tn	USO
			X	Y				
193	35	983	747,35	4.140,55	EA	Α	2.400	09
194	35	983	747,10	4.140,40	EI	М	-	09
195	35	983	747,55	4.140,50	EB	М	4	09
196	35	983	747,30	4.140,70	EB	В	_	09
197	33	984	759,52	4.152,90	EA	Α	-	09
207	32	984	755,15	4.145,50	EB	Α	-	09
209	35	984	762,20	4.143,80	EA	_	_	09
210	33	984	763,60	4.142,15	EB	-	-	09
211	33	984	763,60	4.140,80	EA	-	4.800	09
212	34	984	763,25	4.140,80	EB	-	-	09
213	35	984	762,95	4.140,60	EB	-	-	09
214	33	984	763,70	4.141,40	EA	М	2.000	09
215	33	984	763,30	4.141,50	EB	_	-	09

CLAVES: EA = Explotación Activa, EI = Explotación Intermitente, EB = Explotación Abandonada, A = Altas, M = Medias, B = Bajas.

Son canteras todas de actividad intermitente en el sentido que trabajan lo suficiente como para crear un stock que las permite trabajar una temporada. En periodos de lluvia detienen la extracción.

La gran mayoría de las canteras tienen frentes de un sólo banco. Se quitan previamente todos los materiales que constituyen suelos, después se saca la arcilla mediante pala y se carga en camión para fábrica. En algunas canteras suelen tener cribas, para eliminar algunos cantos más duros.

El uso mayoritario de la arcilla es para la fabricación de cerámica estructural, ladrillos, rasillas, bovedillas. La arcilla tiene un índice de plasticidad bastante bueno, con una medida de 31, que la hace apta para la elaboración de estos elementos.

ANALISIS QUIMICO ARCILLA

NUM.	s _i o ₂	A12O3	Fe ₂ O ₃	TiO2	CaO	MgO	K ₂ O	Na ₂ O	PPc
85	64,9	14,9	7,28	0,54	0,08	1,48	2,12	1,04	7,88
112	45,7	18,8	4,83	-	12,9	1,82	2,76	1,63	17,4
139	53,9	12,8	4,3	0,44	10,2	0,99	2,28	0,60	14,38
146	48,9	10,5	1,56	0,40	16,9	2,24	2,24	0,80	16,10
147	43,9	9,58	4,01	0,44	18,5	2,02	2,19	0,76	18,51
152	48,5	7,73	3,78	0,32	17,7	0,73	2,40	1,10	17,60
157	48,4	7,22	2,10	0,28	15,8	2,26	2,70	1,12	19,99
159	48,0	12,24	3,90	0,48	14,8	0,88	2,48	0,93	16,17
182	53,7	12,64	4,89	0,52	9,24	1,42	2,51	1,16	13,90
195	48,2	13,60	4	0,40	11,5	2,42	2,09	1,0	16,66
210	43,95	10,63	5,65	0,36	14,3	3 2,24	2,64	1,74	18,45
214	44,94	10,47	5,11	0,31	14,8	3 2,12	2,58	1,29	18,30

ENSAYOS TECNOLOGICOS ARCILLA

NUM.	L.L.	L.P.	I.P.
85	26	19	7
109	60,43	29,15	31,28
111	63,8	28	35,8
112	65	20	45
113	58,0	27,1	30,8
139	46	17	29
139	41	22,5	18,5
146	41	15	26
147	41	14	27
152	42	17	25
156	55,1	25,4	29,7
159	55	18	37
176	38,3	19,6	18,7
182	61	19	42
190	39,4	21,9	17,5
191	38	15	23
193	36,1	19,8	16,3
195	42	16	26
189	36,6	22,2	16,3
209	54,4	25,5	28,8
210	41	17	24
211	36,6	23,2	13,3
212	50	17	33
214	37	16	21
214	33,4	20	13

Fuente: ITGE (1990a)

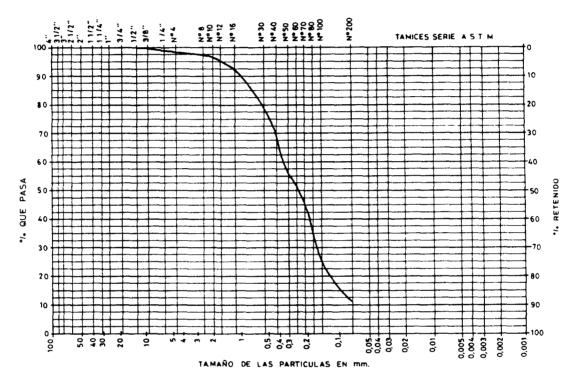
3.3. ARENAS (ARE)

Se han registrado 20 estaciones de ésta sustancia de las cuales, tres están en activo, 11 son de carácter intermitente y 6 están cerradas o abandonadas.

Las arenas explotadas se extraen de dos unidades diferentes, una de edad Mio-Plioceno formada por una alternancia de gravas y arcillas. La otra es de edad Cuaternario, en su mayor parte perteneciente a los aluviales de los ríos.

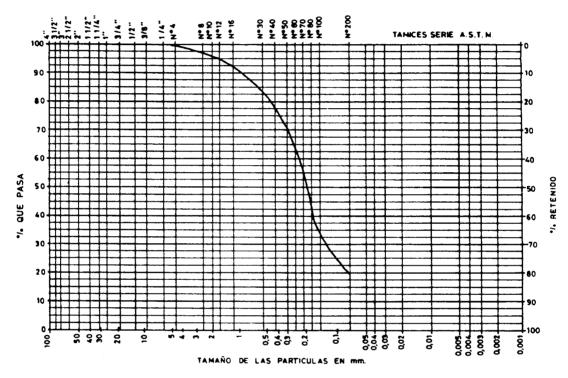
CUADRO DE EXPLOTACIONES E INDICIOS ARENA

NUM.	UND.	HOJA	COOR	DENADAS	ESTADO	RESERVAS	PRODUCCION m³/año	USO
			Х	Y				
3	37	916	664,45	4.205,15	EI	М	-	03
77	4	940	752,35	4.185,75	EI	В	-	03
95	32	960	704,20	4.155,15	EI	М	-	03
101	32	961	740,90	4.156,10	EI	В		03
128	36	981	662,55	4.142,95	EB	Α	-	03
129	36	981	671,95	4.143,40	EA	Α	-	03
130	36	981	672,30	4.143,70	EA	М	36.000	03
131	36	981	673,10	4.143,15	EΑ	A	15.000	03
132	34	981	671,15	4.143,90	EB	М	-	03
137	35	981	680,20	4.140,40	EB	В	-	03
138	36	981	666,70	4.143,70	EI	М	-	03
141	37	981	681,00	4.138,50	EB	М	-	03
170	37	982	693,50	4.150,60	EB	В	-	03
175	33	982	717,75	4.138,40	EA	Α	-	09
177	32	982	693,10	4.150,30	EI	В	_	03
178	37	982	690,35	4.152,00	EI	В	_	03

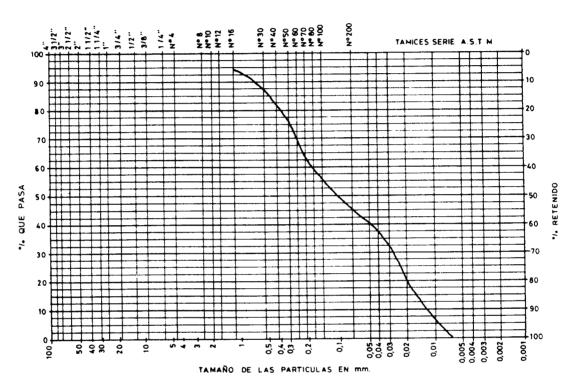

NUM.	UND. LIT.	ALOH	COOR	DENADAS	ESTADO	RESERVAS	PRODUCCION m³/año	USO
			X	Y				
179	32	982	690,75	4.152,25	EI	В	-	03
180	32	982	690,85	4.152,10	EI	В	-	03
181	32	982	690,20	4.152,15	EI	В	_	03
183	37	982	690,35	4.152,30	EA	В	_	03

CLAVES: EA = Explotación Activa, EI = Explotación Intermitente, EB = Explotación Abandonada, A = Altas, M = Medias, B = Bajas

Las explotaciones de arenas de edad Mio-Plioceno están ubicadas todas a los alrededores de Gibraleón Hoja nº 981 a E. 1:50.000, puntos: 128, 129, 130, 131, 132, 137, 138, 141, de los cuales sólo tres están en activo, nºs: 129, 130 y 131. Son canteras grandes y superficies de explotación caótica con medios mecánicos reducidos, puesto que el material está bastante suelto, necesitándose sólamente una pala para el arranque, posteriormente se criba, para eliminar los cantos y a continuación se apila o se carga en camión para la venta.


La otra área importante de extracción de arenas, está situada sobre un afloramiento Cuaternario al NO de Beas, Hoja nº 982 a E. 1: 50.000, puntos: 170, 175, 177, 178, 179, 180 y 181. Se trata de explotaciones todas de carácter intermitente donde se beneficia una capa de arena de pocos metros de espesor. Es arena bien clasificada y con poca matriz arcillosa, está prácticamente suelta, por lo que el modo de extracción es muy sencillo. Se arranca con pala y a continuación se carga en camión. Generalmente antes de expenderla, lo que se hace es apilarla en grandes montones, para su secado natural al sol, "cernir", la arena se desprende del polvo que contiene, que en definitiva es la matriz arcillosa.

ANALISIS GRANULOMETRICO DE ARENA


CURVA GRANULOMETRICA, MUESTRA Nº 131

ANALISIS GRANULOMETRICO DE ARENA

CURVA GRANULOMETRICA, MUESTRA Nº 132

ANALISIS GRANULOMETRICO DE ARENA

CURVA GRANULOMETRICA, MUESTRA Nº 170

Estos afloramientos que se presentan en forma de pequeñas elevaciones del terreno están en su mayoría cubiertos por plantaciones de eucaliptos, que previamente a la extracción de arena se talan. El resultado una vez sacada la arena, es bastante gravoso para el entorno, con problemas de impacto ambiental tanto sobre el paisaje como para la escorrentía, donde existen ya fuertes procesos de acarcavamiento.

3.4. ARENAS SILICEAS (ARS)

De estas sustancias se han inventariado cinco puntos o estaciones, todas correspondientes a indicios. De éstos, tres se han detectado en el curso del proyecto y los dos restantes, como consecuencia de la reinterpretación de la analítica preexistente y disponible.

Forman parte de los sedimentos del Plioceno y del Pliocuaternario de la Depresión del Guadalquivir. Están bien representadas entre Sevilla y Gibraleón en amplios afloramientos y de espesor considerable. En superficie muestran tonos rojizos debido a las alteraciones ferruginosas, en corte fresco son amarillentas y blanquecinas. Están muy seleccionadas y el tamaño grano oscila entre limo grueso У arena microconglomerática. Los clastos fundamentalmente son silíceos, en menor proporción hay fragmentos de rocas (feldespatos, óxidos, etc.).

CUADRO DE INDICIOS ARENA SILICEA

NUM.	UND. LIT.	HOJA	COOR	DENADAS	ESTADO	RESERVAS	PRODUCCION	USO
			Х	Y				
127	34	981	661,70	4.146,70	IN	М	_	_
130	36	981	672,30	4.143,70	IN	М	-	-
131	34	981	673,10	4.143,15	IN	Α	-	_
132	34	981	671,13	4.143,90	IN	М	-	-
140	36	981	664,10	4.136,50	IN	A	-	

CLAVES: EA = Explotación Activa, EI = Explotación Intermitente, El Explotación Abandonada, A = Altas, M = Medias, B = Bajas

Los puntos señalados, numeros 127, 130, 131, 132 y 140 están todos ubicados en las proximidades de Gibraleón, Hoja número 981, de éllos dos corresponden a canteras donde se extrae actualmente arena para áridos de forma intermitente. Se arranca el material poco consolidado mediante pala, pasándolo por una criba para a continuación bien apilarlo o cargarlo sobre camión para la venta. Las canteras son de dimensiones medianas.

De la analítica disponible se deduce que todas las muestras tienen un contenido en SiO_2 superior al 93% y un contenido en FeO_2 menor del 1,5 %, por lo que quizás su uso para vídrios blancos y semiblancos no sea adecuado. Sin embargo sí que pueden ser útiles como: fundentes (dada su gran riqueza en sílice y la ausencia de carbonatos), arenas de moldeo, abrasivos y áridos ligeros.

Dada la amplia extensión de los afloramientos en los cuales están situados estos paquetes arenosos, sería necesario la realización de estudios con la escala y el detalle adecuado que pusieran de manifiesto el verdadero potencial de este área como fuente de arenas síliceas.

En cualquier caso, y teniendo en cuenta la gran calidad de los resultados de la analítica se ha señalado un litotecto posible pero esta sustancia, en los sedimentos Pliocenos y Cuaternarios, aflorantes al O de Gibraleón (Huelva).

ANALISIS QUIMICO ARENAS SILICEAS

NUM.	s _i o ₂	A1203	Fe ₂ O ₃	CaO	MgO	Na ₂ O I	<20 Cr2	O ₃ TiO ₂	PPc
127	93,1	6,70	0,20	_	_	_	-		_
130	97,6	1,4	0,20	-		-	-		0,8
131	96,0	0,8	1,6	-	-	0,06	0,26	- 0,05	1,08
132	95,2	1,93	1,38	-	-	0,05	0,1	- 0,09	1,20
140	95,1	2,80	0,80	-	-	_	-		-

3.5. CALIZAS (CLZ) Y DOLOMIAS (DOL)

En las hojas de estudio se han contabilizado 21 estaciones de esta sustancia de las cuales 4 están en activo, 15 están paradas o abandonadas, 1 corresponde a una explotación intermintente y 1 a un indicio.

Ocho puntos están ubicados en la Hoja de Almadén de la Plata $n\Omega$ 919 a E. 1:50.000, cuatro en la de Aracena $n\Omega$ 917 a E. 1:50.000, tres en la de Santa Olalla del Cala y La Palma del Condado $n\Omega$ s 918 y 982 a E. 1:50.000, dos en la Hoja de Rosal de la Frontera $n\Omega$ 915 a E. 1:50.000 y el restante en la de Aznalcollar $n\Omega$ 961 a E.1:50.000.

El mayor número de afloramientos se distribuye por la parte septentrional de las hojas. Aparecen en todas las Unidades diferenciadas en la Zona de Ossa Morena, a excepción de la Unidad del Cubito. Las coloraciones varían entre gris y blanco. En el Macizo de Aracena generalmente son marmóreas debido al metamorfismo, en otras unidades están parcialmente recristalizadas.

Para esta sustancia se ha señalado un litotecto al N de Niebla (Huelva) en los afloramientos de caliza margosa del Mioceno, que actualmente son la fuente de materia prima para la fábrica de cementos instalada en dicha localidad.

CUADRO DE EXPLOTACIONES E INDICIOS CALIZA

NUM.	UND. LIT.	HOJA	COORI	DENADAS	ESTADO	RESERVAS	PRODUCCION	USO
			X	Υ				
1	22a	915	654,85	4.204,65	EB	М	-	04
2	22a	915	658,25	4.204,65	EB	В		03
26	21b	917	708,85	4.197,30	EA	Α	34.500 *	04
27	21b	917	713,10	4.197,50	EA	Α	30.000 *	04
29	21	917	698,95	4.194,60	EB	M	-	04
30	21	917	700,60	4.193,05	EB	Α	-	04
42	11	918	732,75	4.205,35	EB	Α		04
43	11	918	731,30	4.204,40	EB	М		04
44	21b	918	721,65	4.195,65	EB	Α		04
48	22a	919	761,75	4.196,60	EB	Α		2.4
49	22a	919	757,90	4.196,85	EB	Α		2.
50	22a	919	757,20	4.194,75	EB	Α		2.
51	22a	919	757,40	4.196,20	EB	Α		2.
52	22a	919	756,70	4.197,00	EB	Α		2.
53	22a	919	756,50	4.197,00	EB	Α		2.4
54	22a	919	757,80	4.196,95	EB	Α		2.4
55	22a	919	759,450	4.197,40	EB	Α		2.4
106	32	961	744,30	4.154,50	IN	Α		3.4
160	29	982	705,40	4.135,75	ĒA	Α		04
173	32	982	704,85	4.139,65	EA	Α	500.000**	06
184	32	982	725,65	4.148,80	EI	Α		03

^(*) Cantidades expresadas en m³/año (**) Cantidad expresada en Tn/año

Como se ha dicho anteriormente es la Hoja n2919 a E. 1:50.000 la que contiene el mayor número de explotaciones, puntos 48, 49, 50, 51, 52, 53, 54, 55, aunque todas éllas abandonadas o inactivas. Corresponden a unas calizas marmóreas,

CLAVES: EA = Explotación Activa, EI = Explotación Intermitente, EE Explotación Abandonada, A = Altas, M = Medias, B = Bajas

muy fracturadas y recristalizadas. Afloran en un potente paquete de dirección N 110 y buzamiento 45 E, con una corrida aproximada de 1.500 m y una anchura que varía entre 250 y 300 m.

Todas las explotaciones de dicha hoja están muy agrupadas, dada la relativa poca superficie de afloramiento. Los usos son muy diversos, desde los ornamentales para la obtención de plaquetas pulidas, (intento que fracasó debido al alto grado de fracturación), como para la obtención de áridos para la fabricación de terrazos, marmolina o para la construcción. En la actualidad están todas inactivas.

De la analítica se deduce que algunas muestras presentan un contenido en MgO cercano al 20% por lo que en principio pueden ser intermitentes, como materia prima para refractarios y otros usos.

En cuanto a las explotaciones actualmente en funcionamiento, la mayor está situada en los alrededores de Niebla (punto 173) y es una cantera de caliza margosa algo arcillosa de edad Mioceno, propiedad de Asland, S.A. que abastece de materia prima a la fábrica de cementos sita en dicha localidad.

La explotación es de grandes dimensiones, de longitudes hectométricas y alturas de frente entre 12 y 15 metros. El banco objeto de explotación está subhorizontal y con unos recubrimientos de arcillas de 4 metros de potencia.

El arranque se realiza mediante ripado, y el uso de explosivos2 únicamente se realiza en las zonas donde la dureza no la hace apta para el arranque mecánico.

En los puntos 26 y 27, hoja n2907 a E. 1:50.000, están ubicadas dos explotaciones de caliza para áridos de machaqueo, que explotan un paquete de edad Precámbrico (de

dirección N 125), el arranque se realiza mediante explosivos en un solo banco y los frentes son de grandes dimensiones.

Estas canteras están dotadas de plantas de trituración y clasificación de áridos, destinándose la producción a las obras públicas. Las cifras de producción observadas en el cuadro adjunto presumiblemente están calculadas muy a la baja.

El resto de las estaciones inventariadas carecen de interés, bien por su pequeño tamaño, bien por su ubicación.

ANALISIS QUIMICO CALIZA

NUM	. s _i o ₂	A1 ₂ O ₃	Fe ₂ O ₃	CaO	MgO	Na ₂ O	κ ₂ ο	Cr ₂ O ₃	PPc
2	6,44	0,34	0,60	51,1	0,5	0,02	0,02	-	40,81
30	0,84	0,2	2,04	30,0	20,1	_	-	-	45,85
43	3,67	0,8	0,33	50,7	1,06		_	-	41,95
55	4,37	0,08	0,42	51,7	1,31	1,31	0,04	_	42,04
160	0,96	0,06	1,23	32,2	19,2	-	-	-	46,28

3.6. CAOLIN (KAO)

Sólo se ha detectado un punto donde se haya extraído ésta sustancia, se sitúa en la Hoja de Nerva n Ω 938 a E. 1:50.000, al N de Zalamea la Real, estación n Ω 65.

El caolín se ha formado por la alteración de un paquete de pizarras y lavas interestratificadas, de naturaleza illítico-caolinítica no demasiado potente (5 m), es irregular y muy discontinuo.

CUADRO DE EXPLOTACIONES CAOLIN

NUM.	UND. HOJA LIT.		A CO	ORDENADAS	ESTADO	RESERVAS PRODUCCION		USO
			Х	Υ	, and the state of			
65	25	938	706,55	4.174,85	EB	В	_	11

CLAVES: EA = Explotación Activa, EI = Explotación Intermitente, El Explotación Abandonada, A = Alta, M = Medias, B = Bajas

De la analítica se deduce la baja riqueza en caolín y las altas proporciones en illita, feldespato y cuarzo. Por lo tanto se descartan los usos, en que las exigencias de blancura del producto por su blancura sea muy elevada. Sin embargo, si sería adecuado como materia arcillosa en la elaboración de baldosas cerámicas de pasta blanca y en lozas y porcelanas sanitarias, donde las especificaciones de pureza y blancura no son tan estrictas.

ANALISIS MINERALOGICO

MUESTRA: CAOLIN 938-021-A

Caolinita	 39.7%
Clorita	 2,4%
Cuarzo	 8,6%
Dolomita	 0.4%
Feldespato potásico	 8,8%
Feldespato sódico	 8,5%
Illita	 27,2%

DIFRACCION DE RAYOS X

MUESTRA: CAOLIN 938-021-A

2 0	d (A)	ESTRUCTURA POSIBLE
8.90	9.927	Illita
12.35	7.161	Caolinita
17.81	4.976	Illita
19.85	4.468	Illita
20.87	4.252	Cuarzo
22.89	3.882	Illita
23.82	3.732	Illita
24.90	3.572	Caolinita
25.50	3.490	Illita
26.65	3.342	Cuarzo
27.20	3.270	Feldespato Potásico
27.86	3.199	Feldespato Sódico
29.87	2.988	Illita
31.26	2.859	Illita
32.08	2.787	Illita
34.91	2.567	Illita, Caolinita
36.02	2.491	Caolinita

2 0	d (A)	!	ESTRUCTURA POSIBLE
36.58	2	2.454	Cuarzo
37.72	2	2.382	Caolinita
38.40	2	2.342	Caolinita
39.51	2	2.278	Cuarzo
40.29	2	2.236	Cuarzo
42.42	2	2.118	Cuarzo
45.49	1	.992	Illita
50.14	1	.817	Cuarzo
55.25	1	.661	Cuarzo
55.78	1	.646	Illita
59.96	1	.541	Cuarzo
61.57	1	.505	Illita
62.38	1	.487	Caolinita
67.73	1	.382	Cuarzo
68.33	1	.371	Cuarzo

ANALISIS QUIMICO

MUESTRA: CAOLIN 938-021-A

SiO ₂		51.80	%
A12O3		29.90	%
Fe ₂ O ₃		2.30	%
CaO		0.95	%
MgO		0.95	%
Na ₂ O		1.01	%
K ₂ O	• • • • • • • • • • • • • • • • • • • •	4.72	%
TiO2		0.01	%
Pérdida	por calcinación a 1000° C	8.61	%

En cualquier caso se necesitarían estudios específicos y de detalle, para poder considerar el área como de potencial interés.

3.7. CUARZO (QU)

se han reconocido cuatro estaciones correspondientes a esta sustancia, de las cuales tres son de explotaciones abandonadas y una es un indicio.

Estas canteras se reparten en dos hojas, la de Aznalcollar n Ω 961 a E. 1:50.000, puntos 99 y 100 y la de Nerva n Ω 938 a E. 1:50.000, 61 y 62.

Las explotaciones inactivas beneficiaban unos diques de emplazamiento tardío de dirección N-S y NE. Tienen corridas que oscilan en torno al kilómetro y medio, y unas potencias comprendidas entre 10 y 50 m, siendo el buzamiento marcadamente subvertical. El cuarzo es de color blanco y aspecto lechoso por lo general.

CUADRO DE EXPLOTACIONES E INDICIOS CUARZO

NUM.	UND. LIT.	HOJA	COORDENADAS		ESTADO	RESERVAS	PRODUCCION	USO
			X	Y				
61	2	938	699,85	4.178,50	IN	М	_	_
62	2	938	699,55	4.178,20	EB	М	_	11
99	2	961	746,20	4.168,30	EB	Α	-	11
100	2	961	746,25	4.167,20	EB	Α	-	11

CLAVES: EA = Explotación Activa, EI = Explotación Intermitente, EB Explotación Abandonada, A = Activas, M = Medias, B = Bajas

De las explotaciones abandonadas las más importantes están en la Hoja de Aznalcollar puntos 99 y 100, ámbas beneficiaban el mismo dique, estando separadas entre sí 1

km aproximadamente. Son canteras, sobre todo la primera, de frentes muy amplios. El material se arrancaba mediante explosivos. Su transporte se realizaba por carretera a Sevilla, donde se ha utilizado en la fabricación de loza, dejándose de extraer en el año 1977 por causas desconocidas.

La otra cantera inactiva (punto 62) es de reducidas dimensiones, y el material se destinaba a fundente, estando ya en 1.974 cerrada.

ANALISIS QUIMICO
CUARZO

NUM.	s _i o ₂	A12O3	Fe ₂ O ₃	CaO	MgO	Na ₂ O	K ₂ O	cr ₂ o ₃	PPc
99	98,7	0,10	0,01	0,04	_	0,02	0,4	-	0,18
100	92,2	1,40	3,02	0,8	0,06	0,04	0,04	-	1,12

3.8. DIABASAS (DIA)

Bajo ésta clasificación se han agrupado no sólo las rocas diabásicas (s.s.), sino algunos tipos de lavas y rocas volcánicas de difícil clasificación desde el punto de vista de roca industrial, pero que sin embargo son todas de carácter básico y presentan la típica textura diabásica.

Se ha reconocido un total de cinco puntos en los que se ha beneficiado o beneficia esta sustancia. De éstos, dos corresponden a unas canteras activas, dos a canteras inactivas o paradas y otra es un indicio.

Abundan en los flancos de los anticlinorios de Puebla de Guzmán, Calañas y Valverde del Camino, en la Zona Surportuguesa, y son de menor magnitud y desarrollo en otras Unidades. Tienen una continuidad de afloramientos kilométrica y un espesor que puede alcanzar los 500 m. Son de color verde oscuro y textura ofítica de grano fino a medio, a veces esquistosa. Los constituyentes esenciales son plagioclasa y augita.

CUADRO DE EXPLOTACIONES E INDICIOS DIABASA

NUM	UND. HOJA		A COC	RDENADAS	ESTADO	RESERVAS PRODUCCION Tn/año		uso
			Х	Y				
58	28	987	674,40	4.181,80	IN	М	-	01
59	28	937	667,55	4.177,35	EB	-	-	04
64	26	938	717,80	4.174,40	EA	Α	250.000	04
88	3	958	633,85	4.159,60	EB	В	-	01
96	28	960	698,65	4.153,90	EA	М	-	04

CLAVES: EA = Explotación Activa, EI = Explotación Intermitente, EB = Explotación Abandonada, A = Altas, M = Medias, B = Bajas

La explotación activa más importante, punto nº 64 está situada en las proximidades de Nerva (hoja 938), y se dedica al machaqueo y trituración de áridos. Explota un potente paquete de lavas básicas de textura diabásica de gran dureza, con un desgaste de "Los Angeles" de 18%, para granulometría "A". La producción estimada es de 250.000 Tn/año, las reservas son altas considerando esos ritmos de producción.

La cantera dispone de dos frentes de dimensiones medianas, donde el arranque se efectua mediante explosivos. Posteriormente el material se transporta a la planta de trituración y clasificación ubicada en la misma cantera, que dispone de machacadora, molino primario y secundario, además de cribadoras y cintas transportadoras.

La explotación de carácter intermitente, punto 96, situada en la hoja de Valverde del Camino (960), explota un pequeño dique de diabasas con un frente de reducidas dimensiones. El material se transporta a una pequeña planta de machaqueo ubicada en las cercanías, la producción es baja y las reservas no son demasiado elevadas.

El indicio registrado estación nQ 58, está situado en la hoja del Cerro de Andévalo (937), y está ubicado en la antigua mina de la Joya. Esta mina, que forma parte del dominio minero de Río Tinto, S.A., va a producir, mediante el corte con hilo diamantado, bloques de tamaño comercial en lo que son los hastiales dejados por la extracción a cielo abierto de la masa de sulfuros.

El material es una roca verde de carácter básico, muy cloritizada y con textura microdiabásica, presenta una fracturación apreciable producto de una clara disyunción columnar. Aunque en el frente estas discontinuidades aparecen rellenas fundamentalmente de clorita, comercialmente el material es muy interesante presenta un color verde oscuro muy intenso y el tamaño del grano es fino.

Otra cantera inactiva, punto nQ 59, es de dimensiones muy reducidas, que en su día, se instaló para las obras de acondicionamiento de la carretera, careciendo por lo demás de interés.

ENSAYO TECNOLOGICO DIABASA

NUMERO	DESGASTE "LOS ANGELES"	ADESIVIDAD
59	13,9 %	98,0 %

3.9. ESCORIA (ESC)

La única estación inventariada está ubicada en la escombrera de la antigua fundición de cobre de la empresa Rio Tinto, S.A., en las inmediaciones de Nerva, Hoja nQ 938 a E. 1:50.000.

El material es de gran dureza, forma masas compactas y fundidas en un "todo uno"; son producto de la apilación en caliente de las coladas sobrantes de los hornos. Estas son amontonadas unas sobre otras que forman una masa fundida in-situ, pasado el tiempo termina de compactarse y solidificarse con el resultado de formar una auténtica escombrera metálica.

CUADRO DE EXPLOTACIONES E INDICIOS ESCORIA

NUM.	UND. LIT.	HOJA	HOJA COORDENADAS		ESTADO	RESERVAS	PRODUCCION	uso
			Х	Y				
68	-	938	715,10	4.173,20	EI	A	-	04

CLAVES: EA = Explotación Activa, EI = Explotación Intermitente, EB Explotación Abandonada, A = Altas, M = Medias, B = Bajas

Este material se emplea en algunos casos de forma muy local por la propia empresa como pavimento de los caminos dentro de sus instalaciones; por su gran capacidad filtrante, aunque su grado de compactación es nulo y su abrasividad muy elevada.

El modo de extracción es muy sencillo, con un martillo hidráulico - rompedor montado en una retro se van partiendo trozos de la masa principal y una vez retirados éstos del frente, se acaban de romper al tamaño adecuado por el mismo procedimiento, posteriormente se pasa por una criba grosera quedando el producto listo para su utilización.

La escoria en cantera es un material muy duro y abrasivo, con altos contenidos en hierro y azufre. Presenta como característica tecnológica un desgaste de "Los Angeles" muy bajo, sin embargo dado su gran abrasividad sólo puede ser utilizado en los cometidos para los cuales se destina en la actualidad.

	ESCORIA
ENSAYOS	DESGASTE "LOS ANGELES" Granulometría "E"
NUMEROS	
25	18,3 %

3.10. ESQUISTOS (ESQ)

Se ha inventariado un total de seis puntos, donde se extrae o han extraído esquistos grauwáquicos (o grauwacas esquistosas) en cuestión. Todos se encuentran en la Hoja nQ 981 a E. 1:50.000, n^0 s: 133, 134, 135, 136, 142 y 143. De éstos uno corresponde a una cantera activa, el 134, cuatro están abandonados o inactivos, n^0 s: 133, 135, 136 y 143 y el restante es una explotación de carácter intermitente.

Se encuentra ampliamente representadas en la mitad central de las hojas de estudio. La mayor parte de los afloramientos pertenecen a la Faja Pirítica y el resto al Dominio del Baixo Alentejo, ámbos de la Zona Surportuguesa. Están intercalados entre pizarras y junto con éstas constituyen el denominado Grupo Culm. Son esquistos areniscosos de colores variados, donde dominan los tonos crema y verdosos. Los estratos son de centimétricos a métricos. La granulometría es de fina a media (limo-arenosa), aunque a veces hay conglomerados.

CUADRO DE EXPLOTACIONES E INDICIOS
ESQUISTOS GRAUWAQUICOS

NUM.	UND. HOJA LIT.		IA COORDENADAS		ESTADO	RESERVAS	PRODUCCION Tn/año	USO
			Х	Y				
133	29	981	677,40	4.140,60	EB	Α	-	04
134	29	981	680,80	4.141,70	EA	Α	250.000	04
135	29	981	679,95	4.140,95	€B	Α	-	04
136	29	981	679,70	4.140,95	EB	Α	_	04
142	29	981	664,50	4.137,75	EI	Α		04
143	29	981	664,05	4.138,00	EB	М	-	04

CLAVES: EA = Explotación Activa, EI = Explotación Intermitente, EB Explotación Abandonada, A = Altas, M = Medias, B = Bajas

La explotación actualmente activa, nº 134, denominada "La Zorra" y propiedd de Rafael Morales, S.A., es una gran explotación, de dimensiones considerables, situada en las cercanías de Gibraleón (981), trabaja un frente de más de 300 metros de longitud por 20 de altura. El arranque se efectúa mediante explosivos, el material se transporta con "dumper" a la planta de trituración próxima a la cantera. La producción estimada es de 250.000 Tn/año, aunque las cifras reales pueden superar en el doble a esa cantidad.

La planta de tratamiento es muy completa disponiendo de machacadora, molinos y clasificdora. En la actualidad se monta una planta para la elaboración de aglomerados asfálticos.

La otra gran explotación, nº 133, se encuentra sitúada muy próxima a la anterior. Constituye la mayor cantera de todas las inventariadas en las hojas; que si bien está parada en la actualidad, la empresa TRAGSA, pretende ponerla en funcionamiento en breve plazo. Esta explotación se puso en marcha para el suministro de piedra de escollera, para la construcción del gran dique del Puerto de Huelva; obra de más de 10 km de longitud. La cantera tiene un frente de unos 400 metros de largo, con bancos de 45 metros de altura, estando en la actualidad semicubierta de agua.

La extracción de carácter intermitente, nº 142, denominada "Palmarejos", es también de grandes dimensiones extrayéndose material para áridos. El procedimiento de extracción es totalmente manual, fragmentando bloques grandes en unos más pequeños a base de golpes de "marra". El ocaso de esta cantera se debe primero a la competencia de otras y su lejanía de los centros de consumo.

El resto de explotaciones carece de interés por su pequeño tamaño y su distancia a hipotéticas zonas de consumo.

3.11. FLUORITA (FLU)

El punto inventariado n^0 76, está situado en la Hoja de Castillo de las Guardas n^0 139 a E. 1:50.000. Corresponde a la mina de "Los Angeles" que extrajo fluorita entre los años 1.966 y 1.976, en que se paralizaron los trabajos por agotamiento del mineral.

CUADRO DE EXPLOTACIONES FLUORITA

NUM.	UND.	HOJA	COOR	DENADAS	ESTADO	RESERVAS	PRODUCCION	USO
			Х	Y				
76	5	939	731,25	4.178,85	ЕВ	В	-	12

CLAVES: EA = Explotación Activa, EI = Explotación Intermitente, EB Explotación Abandonada, A = Altas, M = Medias, B= Bajas

El mineral arma en un filón, encajado entre granitos, con dirección ESE-ONO y un buzamiento general de 80° S, la corrida reconocida se estima en 1 km.

La fluorita se dispone en manchas irregulares sobre el plano del filón, con una paragénesis formada por fluorita, galena y blenda, las leyes medias extraídas eran 60-70% de F_2 Ca, 15% Pb, 0,7 % de Zn.

Durante el período que la mina estuvo en operación se extrajeron 1.203,34 Tn de espato-ácido húmedo, 8.587 Tn de Galena y 2.251 Tn de blenda. En el año 1.976 la empresa, a la vista de las reservas, decidió que no era rentable en explotación y cerró la mina.

3.12. GRAFITO (GRF)

Se ha reconocido un total de veinte estaciones de ésta sustancia, dieciseis corresponden a indicios y cuatro corresponden a antiguas explotaciones de grafito.

Los indicios de grafito aparecen al S de Cortegana y al E de Almonaster la Real. Están asociados a los neises cuarzo-feldespáticos con intercalaciones de caliza y mármol de Fuente del Oro, pertenecientes a la Cuña de Cortegana de la Unidad Macizo de Aracena.

Los neises grafitosos son rocas de color gris oscuro y textura bandeada, donde el grafito aparece en diseminaciones junto con el cuarzo, plagioclasa, feldespato potásico, sillimanita y cordierita.

CUADRO DE EXPLOTACIONES E INDICIOS

GRAFITO

NUM.	UND. LIT.	HOJA	COORD	ENADAS	ESTADO	RESERVAS	PRODUCCION	USO
			Х	Y				
28	23a	917	691,850	4.196,65	EB	-	-	-
31	23a	917	696,30	4.194,50	IN	_	-	-
37	22	917	698,80	4.194,50	IN	-	-	_
38	22	917	698,80	4.194,00	IN	-	-	-
39	22	917	698,50	4.193,40	IN	-	-	_
224	16b	916	675,10	4.206,80	IN	-	-	-
225	22	916	677,10	4.200,10	IN	-	-	_
226	22	916	676,85	4.202,85	EB	-	-	-
227	22 a	916	677,65	4.202,35	EB	_	-	-
228	22a	916	678,95	4.201,90	IN	_	- ,	-
229	22a	916	679,30	4.201,10	IN	_	-	-
230	22	916	680,00	4.201,10	IN	-	_	-
231	22	916	680,10	4.201,40	IN	-	· •	-

NUM.	UND. LIT.	HOJA	COORE	DENADAS	ESTADO	RESERVAS PRODUCCION		USO
			X	Y				
232	22a	916	680,15	4.200,20	IN	-	-	-
233	16b	916	680,10	4.206,10	IN	-	-	-
234	16b	916	686,50	4.200,55	IN	_	-	-
235	23a	917	689,10	4.196,10	IN	-	-	-
236	22a	917	700,40	4.193,80	IN	_	-	-
237	21	917	707,50	4.200,20	IN	-	-	
238	23	917	695,50	4.194,00	EB	-	-	_

CLAVES: EA = Explotación Activa, EI = Explotación Intermitente, EB= Explotación Abandonada, A = Altas, M = Medias, B = Bajas

El indicio más importante es el correspondiente a la mina "San Carlos" (n^0 28), que está situado en un granito anatéctico, con restos de lentejones calcáreos.

La mina consiste en un socavón en el que se ven restos de galerías. La mineralización se presenta estratificada, con abundantes óxidos de hierro.

Otro indicio de importancia es el nº 238, que estuvo en explotación hace muchos años, aunque en la actualidad apenas se reconocen las labores por estar en su mayor parte semienterradas.

Otro tanto sucede con la mayor parte de los indicios aqui reseñados, o bien corresponden a labores muy antiguas de las que solo quedan pequeños pocillos, o son restos de otras explotaciones en las que se observaba en la paragénesis presencia de grafito.

En cualquier caso los indicios estan obtenidos del trabajo ITGE (1972a), donde para cada uno de los puntos señalados se ha levantado un pequeño esquema geológico acompañado de un

croquis con la situación y tipo de las labores presentes, esta documentación se acompaña en las fichas levantadas al efecto.

En las conclusiones de dicho informe se reseña la poca importancia que estos indicios tienen de cara a una futura explotación, sin embargo se puede afirmar, que dado que el objeto de este estudio eran otras sustancias, no es difícil pensar que una nueva revisión de estos puntos a la luz de los nuevos modelos pudieran dar como resultado nuevas posibilidades mineras a estas sustancias, dado además el alto precio que adquieren en el mercado, siendo por otra parte España un país que importa todo el grafito que consume.

3.13. GRANITOS (GR)

Se ha inventariado un total de 26 estaciones correspondientes a esta sustancia, de las cuales siete son activas, dos intermitentes, 14 están abandonadas o inactivas, y tres que corresponden a indicios.

En cuanto a las activas, cuatro son canteras de donde se extrae granito con fines ornamentales y tres son de áridos para la construcción, previo machaqueo.

CUADRO DE EXPLOTACIONES E INDICIOS

GRANITO

NUM.	UND. LIT.	HOJA	COOR	DENADAS	ESTADO	RESERVAS	PRODUCCION	USO
			Х	Υ				
4	7	916	673,30	4.203,50	EB	М	-	02
5	7	916	672,95	4.202,60	EB	M	-	02
10	6	916	670,30	4.198,65	EB	Α	-	02
11	6	916	670,00	4.197,65	EB	Α		02
32	6	917	696,85	4.191,10	EB	M	_	02
33	5a	917	690,05	4.191,70	EB	Α	_	02
34	6	917	696,15	4.191,20	EI	Α	_	02
45	4	918	745,55	4.203,10	EA	Α	800m³/año	01
46	4	918	745,65	4.200,80	EA	Α	1.500m³/año	01
47	4	918	747,10	4.201,50	EA	Α	1.500m³/año	01
56	6	919	760,60	4.194,00	EB	Α	-	1.2
78	4	940	751,35	4.184,95	EB	Α	_	02
79	4	940	752,25	4.182,25	IN	Α	_	02
80	4	940	749,75	4.182,50	EI	M		02
81	6	940	763,25	4.176,70	EB	Α	-	02
82	6	940	761,55	4.191,05	EB	Α	_	02
83	6	940	763,45	4.190,75	EB	Α	_	02
98	5	961	747,30	4.169,00	IN	Α	_	02

NUM.	UND. LIT.	HOJA	HOJA	HOJA	ALOH	НОЈА	НОЈА	НОЈА	HOJA	ALOH		DENADAS	ESTADO	RESERVAS	PRODUCCION	uso
			X	Υ												
108	5	962	764,75	4.167,15	EA	A	250.000 *	04								
114	6	962	758,80	4.159,90	EA	A	1.2×10 ⁵ *	04								
121	6	962	751,75	4.159,25	EB	A	_	02								
122	6	962	752,50	4.159,10	EB	A	-	02								
123	6	962	751,90	4.157,90	EA	A	1.500 m ³	02								
124	6	962	753,20	4.159,30	EA	Α	500.000 *	04								
125	6	962	752,15	4.158,25	EB	A	-	02								
126	5	962	762,50	4.169,00	IN	В	-	-								

^(*) Expresados en Tn/año

CLAVES: EA = Explotación Activa, EI = Explotación Intermitente, EB = Explotación Abandonada, A = Altas, M = Medias, B = Bajas

- ORNAMENTALES Y DE CONSTRUCCION

Los puntos de extracción de granito ornamental están concentrados en los alrededores de Sta. Olalla del Cala Hoja $n\Omega$ 918 a E. 1:50.000, las estaciones son: 45, 46 y 47.

En el mapa de recursos se ha señalado un litotecto para esta extracción en el macizo de Santa Olalla del Cala, dada las existencia allí de varias canteras de granito en bloques para su uso como piedra natural.

Este granito está situado dentro de la Unidad de Arroyo Molinos. Tiene una morfología alargada con 15 km de longitud. Es una roca granuda de color grisáceo. A menudo presenta una foliación magmática bien desarrollada marcada por melanocratos. Presenta dos facies asociadas una de composición cuarzodiorítica-tonalítica y otra de composición diorítica.

^(**) En forma de bordillos y adoquines

Las canteras explotadas poseen frentes de dimensiones medias a grandes, con alturas de 5 a 6 metros, el grado de mecanización se puede considerar elevado con gran número de maquinaria pesada, palas, cortabloques, así como de tipo ligero, martillos, etc.

El bloque extraído es de tamaño comercial, siendo el acabado del mismo de primera calidad apto para el mercado nacional e internacional.

En la actualidad la producción no es elevada, puesto que dos de éllas están en fase avanzada de apertura de frentes y la restante tiene un sistema de explotación caótico, con una falta grave de racionalización de los frentes de trabajo, así como de ubicación de estériles.

En total y para las canteras en activo se puede estimar una producción anual de $3.800~{\rm m}^3/{\rm año}$.

En cuanto a las canteras para roca de construcción (piedra de canteria), puntos 78, 80, 81, 82 y 83 son de dimensiones reducidas y carácter totalmente artesanal con producciones marginales, siempre bajo pedido para obras de ámbito local o bien para completar pedidos de otras grandes canteras.

Se ha señalado en el mapa de recursos, cuatro litotectos correspondientes a esta materia, situados en los macizos de Gil-Marquez, Escalada, El Berrocal y Gerena, que presentan buenas características para la extracción de roca de canteria (Uso 2, mamposteria, bordillos, peldaños, adoquines, etc).

Mención aparte merece la zona de Gerena (Sevilla), (estaciones nQs. 121 a 126) lugar de cantería histórica y tradicional, de dónde se ha extraído la práctica totalidad del

granito para adoquines, bordillos, losas y sillería en general de la ciudad de Sevilla.

Este granito se adscribe a la parte meridional de la Faja Pirítica, en su margen con la Depresión del Guadalquivir. Tiene una disposición alargada con dirección aproximada E-O.La textura es granoblástica. La composición mineralógica principal es: cuarzo, ortosa, plagioclasa y biotita. La roca se clasifica como granito biotítico, al que le acompaña un cortejo pegmatítico y aplítico.

Las canteras activas están prácticamente dentro del casco urbano, los puntos de extracción existentes en la actualidad son numerosos, todos ellos abandonados a excepción de dos que son regentados por la cooperativa regional de Gerena, quedando únicamente otro más en activo que explota una empresa como árido de machaqueo.

La cooperativa se dedica a la elaboración de adoquines, bordillos, plaquetas, algo de sillería y excepcionalmente alguna talla o lápida. La elaboración es completamente artesanal y primitiva, careciendo de cualquier medio mecánico para su transporte.

La actividad es bastante escasa, aunque con motivo de las obras de la Expo 92 se reactivó la demanda, tanto directamente para el recinto ferial, como para las obras de rehabilitación y embellecimiento que con el mismo motivo se realizaron en Sevilla.

Los puntos 4, 5, 10, 11, 32, 33 y 34 corresponden a pequeñas canteras, de escasa actividad tanto por el volumen de material extraído como por el tipo de productos, generalmente adoquines y pequeñas losas. En todos los casos, la actividad es de carácter muy intermitente.

Los indicios inventariados no son de interés relevante. Dadas sus características de fracturación, diaclasado y tonalidad, únicamente podrían tener interés como roca para la construcción o para áridos de machaqueo.

ENSAYOS TECNOLOGICOS GRANITO

NUMEROS	45	11	32	33	56	Unds.
ENSAYOS						
P.Específico	2,79	2,60	2,62	2,63	2,60	gr/cm³
C.Absorción	0,11	0,35	0,45	0,22	0,28	%
R.Compresión	1.036	1.198	1.024	1.017	1.263	kg/cm ²
R.Flexión	122	163	123	213	192	kg/cm
R.Desgaste	1,5	1,72	1,25	1,39	1,72	mm
R.Impacto	62	-	-	-	-	cm
M.Heladicidad	0,02	-	_	-	-	%
Ch.Térmico	Negativo		Tonos ana- ranjados	Negativo	Leves Fisuras	

- GRANITOS PARA ARIDOS

Las canteras para áridos están todas excepto una situadas en la Hoja de Alcalá del Río (962) y corresponden a los puntos 108, 114 y 124.

Se trata de grandes explotaciones de frentes amplios con altas producciones y con un grado de mecanización muy elevado. Todas tienen a pié de obra las correspondientes plantas de tratamiento, trituración y clasificación; en todos los casos el arranque es mediante explosivos.

Es de destacar la situada al NO de Guillena (estación nº 114), por ser de las más grandes en a cuanto tamaño y capacidad de producción. Es completa por el variado grado de tamaños de áridos vendibles, y moderna por maquinaria instalada, tanto en la fase de arranque como en la de trituración y clasificación. La producción es superior a 1,2 millones toneladas al año. destinadas de que son fundamentalmente a la obra pública, tanto para hormigones, como sub-base de carreteras y aglomerados asfálticos para capas de rodadura.

ENSAYOS TECNOLOGICOS

GRANITO

ISAYOS	DESGASTE "LO Granulom	ADHESIVIDAD		
JMEROS				
108	22	%	95	%
114	26	%	95	%
123	26,1	%	94,4	%
124	23	%	96,4	%

3.14. GRAVAS, ARENAS Y ZAHORRAS (GRV, ARE, ZAH)

Se ha inventariado un total de 30 puntos en los que se beneficia o se ha beneficiado gravas y arenas conjuntamente. Aunque se han denominado gravas y arenas, lo que mayoritariamente se extrae son las gravas para su clasificación o machaqueo; siendo en muchos casos la arena un subproducto que para muchas empresas es molesto y gravoso, por su gran volúmen y escaso precio.

De todos los puntos registrados, 20 corresponden a canteras activas, 5 son de carácter intermitente y otros 5 son extracciones abandonadas o inactivas, en el momento de la realización de este trabajo.

CUADRO DE EXPLOTACIONES E INDICIOS GRAVAS Y ARENAS

NUM.	UND. LIT.	HOJA	COOR	DENADAS	ESTADO	RESERVAS	PRODUCCION Tn/año	USO
			x	Υ				
60	26	938	716,40	4.186,80	EI	В	_	03
94	32	960	703,00	4.155,4	EA	Α	20.000	03
109	37	962	238,55	4.157,40	IN	M	-	03
110	37	962	238,55	4.157,40	EB	М	_	03
115	37	962	761,65	4.158,00	EA	Α	125.000	03
116	37	962	761,40	4.156,45	EA	Α	-	03
117	37	962	762,65	4.154,85	EA	М	160.000	03
118	37	962	737,50	4.156,80	EA	М	112.000	03
119	37	962	237,40	4.156,80	EA	М	110.000	03
120	37	962	236,85	4.153,35	EA	М	-	03
144	37	981	681,50	4.136,60	EB	В	_	03
168	37	981	690,90	4.143,55	EI	М	-	03
169	37	982	690,90	4.142,45	EI	М	_	03
171	37	982	708,70	4.141,40	EI	В	-	03

NUM.	UND. LIT.	HOJA	COOR	DENADAS	ESTADO	RESERVAS	PRODUCCION Tn/año	USO
			x	Y				
185	37	983	246,25	4.144,65	EA	М	45.000	03
186	37	983	745,50	4.143,50	EA	В	10.000	03
187	37	983	745,40	4.147,85	EI	В	-	3.5
198	37	984	243,90	4.150,40	EA	Α	350.000	3.4
199	37	984	240,40	4.151,15	EB	-		3.4
200	37	984	239,85	4.151,80	EA	Α	230.000	3.4
201	37	984	240,25	4.150,60	EA	Α	500.000	3.4
202	37	984	238,75	4.150,35	EA	Α	250.000	3.4
203	37	984	238,30	4.149,70	EA	Α	264.000	3.4
204	37	984	243,60	4.149,20	EB	М	-	3.4
205	37	984	243,85	4.147,50	EA	Α	150.000	3.4
206	37	984	245,90	4.147,50	EA	Α	150.000	3.4
208	32	984	242,45	4.144,70	EB	В	150.000	3.4
216	37	984	241,90	4.138,50	EA	М	184.000	3.4
217	37	984	242,50	4.138,60	EA	Α	250.000	3.4
221	37	984	236,00	4.147,55	EA	М	150.000	3.4
222	37	984	240,90	4.152,20	EA	Α	250.000	3.4

CLAVES: EA: Explotación Activa, EI = Explotación Intermitente, EA = Explotación Abandonada, A = Altas, M = Medias, B = Bajas

La mayor parte de estas canteras, y desde luego las más importantes, están en las cercanías de Sevilla en una radio no superior a los 25 km. Tienen alta actividad, debido a la gran demanda de áridos que necesitan las obras de la Expo'92, que implican un elevado consumo de este tipo de materiales.

Estas explotaciones benefician las gravas y arenas de los principales cauces fluviales, en este caso el Guadalquivir y el Guadiamar, sacándolas de los lechos de los ríos o bien de las llanuras de inundación de los mismos.

Estos depósitos están formados por alternancias de gravas y arenas, las gravas forman paquetes de 2 y 6 metros de potencia. Los cantos son de granito, cuarcita, y rocas metamórficas, están bien redondeados y mal clasificados, la matriz es areno-arcillosa. Los niveles de arenas son también de mediana potencia, con cambios bruscos laterales al igual que la de gravas; tiene una matriz arcillosa y los clastos son de naturaleza areno-feldespática bien clasificados.

La explotación de grava y arena se efectúa con pala mecánica. Uno de los inconvenientes que existe en las canteras, es la aparición de costras conglomeráticas. Son conglomerados cuyos cantos están trabados por un cemento carbonatado muy Su aparición, en algunos casos, implica que algunos frentes de explotación tengan que ser abandonados.

Otro inconveniente que pueden presentar estas explotaciones, es la cercanía del nivel freático del río, que suele estar a unos 4 o 5 metros por debajo de la superficie.

Las explotaciones son todas muy similares: empiezan recubrimiento, de terreno vegetal por retirar el naturaleza arcillosa, con un espesor medio de 3 o 4 metros; posteriormente se realiza una excavación con la pala, que saca transporta a la todo-uno; planta materia1 se procesamiento, que consta de un "tromel" para separar la grava de la arena; finalmente, el material sobrante pasa por una batería de molinos dispuesta para la trituración los difererentes tamaños en función del destino final.

El mayor número de explotaciones pertenece a la Hoja de Sevilla nº 984 a E. 1:50.000 en las inmediaciones de San José de la Rinconada, números 198, 199, 200, 201, 202, 203, 204, 205, 206, 208, 216, 217, 221 y 222. En Alcalá del Río nº 962 a E. 1.50.000, nºs: 110, 115, 116, 117, 118, 119 y 120. En La Palma del Condado (nº 982) nºs: 168, 169, 171 (canteras intermitentes). En Sanlúcar la Mayor nº 983 a E. 1.50.000, nºs.

185, 186 y 187 y, finalmente las Hojas de Nerva n Ω 938 a E. 1:50.000, Valverde del Camino n Ω 969 a E. 1:50.000 y Gibraleón n Ω 980 a E. 1:50.000, con los números: 60, 94 y 144, respectivamente.

- ZAHORRAS (ZAH)

La zahorra es una sustancia de muy bajo interés económico y en general de uso muy local. Se han inventariado nueve puntos de extracción, de los cuales ninguno trabaja de forma continuada.

La zahorra es un material formado por depósitos aluviales, en una mezcla heterogénea de grava, arena y arcilla en proporciones muy variables. Se extrae, se comercializa y se usa como un todo-uno, utilizándose fundamentalmente en obras públicas, arreglos de caminos y carreteras.

CUADRO DE EXPLOTACIONES ZAHORRAS

NUM.	UND. HOJA LIT.		A COC	PRDENADAS	ESTADO	RESERVAS	PRODUCCION	USO
			Х	Υ				
103	37	961	738,95	4.154,50	EI	М	-	03
104	37	961	739,10	4.154,35	EB	В	-	03
161	37	982	702,40	4.134,60	EI	М	-	03
162	37	982	702,40	4.134,80	EI	М	-	03
163	37	982	702,15	4.135,15	EB	М	_	03
164	37	982	702,40	4.135,30	EB	М	-	03
165	37	982	702,60	4.135,80	EB	М	-	03
166	37	982	702,80	4.136,05	EB	М	_	03
167	37	982	703,35	4.136,35	EI	М	-	03

CLAVES: EA = Explotación Activa, EI = Explotación Intermitente, EA Explotacion Abandonada, A = Altas, M = Medias, B = Bajas

La principal área de extracción está situada sobre el cauce del Río Odiel al SO de Niebla (hoja 983). Las explotaciones son todas estacionales y en general la mayoría abandonadas. El grado de mecanización es rudimentario se limita a una pala cargadora, a una criba para eliminar los tamaños más gruesos y un camión para transportar el material.

El tamaño de las explotaciones suele ser reducido, y de carácter familiar. El impacto visual es elevado.

3.15. MARMOLES (MA)

Se ha inventariado un total de ocho puntos correspondientes a esta sustancia, de éstos cuatro están en activo, dos son inactivos, uno es de carácter intermitente y otro corresponde a un indicio detectado en campo.

Existe una importante franja de mármoles 3 km al 0 y Se de Aroche; que se extiende unos 8 km, con una anchura media de 800 m. Está ubicada en la Cuña de Cortegana, dentro de la Unidad Macizo de Aracena. Son generalmente blancos, con tonos verdosos en forma de bandas (venas producidas por metamorfismo); están intercalados entre neises cuarzofeldespáticos, ortoneises y ortoanfibolitas.

De esta sustancia se han señalado 2 litotectos, sobre las calizas y mármoles cámbricos del Macizo de Aracena, que en la actualidad soportan explotaciones de marmol en bloques como roca ornamental, ya que reune las características tecnológicas y estéticas requeridas.

Estos litotectos estan ubicados en las localidades de Aroche y Los Marines, en la provincia de Huelva.

CUADRO DE EXPLOTACIONES E INDICIOS
MARMOL

NUM.	UND. LIT.	НОЈА	COOR	DENADAS	ESTADO	RESERVAS	PRODUCCION m³/año	USO
			Х	Y				
6	22a	916	668,70	4.203,20	EB	М	-	01
7	22a	916	678,35	4.202,00	EB	М	-	01
8	22a	916	679,75	4.200,17	EA	Α	2.000	01
21	22b	917	705,35	4.199,55	EA	В	600	01
22	22b	917	705,10	4.199,10	EI	В		01
23	22b	917	705,10	4.199,05	EA	В	_	01

NUM.	UND. LIT.	HOJA	COOR	DENADAS	ESTADO	RESERVAS	PRODUCCION m³/año	USO
			Х	Υ				
24	22b	917	705,25	4.199,80	EA	В	500	01
25	21	917	709,90	4.198,60	EB	В	-	02
40	22	917	715,30	4.196,20	IN	-		-

CLAVES: EA = Explotación Activa, EI = Explotación Intermitente, EB Explotación Abandoda, A = Altas, M = Medias, B = Bajas

En cuanto a las canteras activas (puntos $n ext{OS}$ 8, 21, 23 y 24), son de baja producción. La n^0 8, situada en Aroche, ha comenzado en 1.991 las labores de limpieza y apertura de frente, su grado de mecanización es elevado y se puede estimar en el futuro una producción anual de 2.000 m^3 .

El frente abierto en la actualidad es de dimensiones medianas, 30 m de largo por 4 m de alto. Presentan un aspecto bastante límpio con ausencia de fracturas y "pelos" importantes. El grado de carstificación es bajo, inferior a 5 m. El arranque se realiza mediante hilo diamantado y rozadora.

La cantera de Mármoles Cerro Blanco, punto 24, aunque de mayor tamaño que la anterior presenta unas características de explotación muy deficientes; atribuibles en su totalidad al fortísimo proceso de carstificación al que ha estado sometido el afloramiento objeto de la explotación. En consecuencia, el ratio de aprovechamiento es francamente bajo, extrayéndose muy pocos bloques de tamaño comercial y estos de calidad deficiente. La producción estimada no supera los 500 m³ anuales.

El resto de las canteras activas puntos 21 y 23 son de dimensiones reducidas con un grado de mecanización muy bajo,

y de carácter familiar y artesanal, siendo las producciones por tanto escasas.

Las canteras inactivas puntos 6, 7, 24 y 25, son de mediana entidad, están abandonadas por su alto grado de fracturación y diaclasamiento, además de presentar unos afloramientos en los que es difícil y gravoso planificar una explotación racional.

El indicio inventariado punto $n\Omega$ 40 corresponde a un afloramiento de mármol dolomítico situado al E de Aracena, que por sus cualidades de color y textura pudieran hacerlo interesante.

En general en toda la Sierra de Aroche, son muy abundantes los paquetes de mármol intercalados en la serie, por lo que sería interesante la realización de estudios específicos que pusieran de manifiesto el verdadero potencial de mármol en dicha área.

ANALISIS QUIMICO
MARMOL

NUM.	$s_i o_2$	A1203	Fe ₂ O ₃	CaO MgO	Na ₂ O	K ₂ O Cr ₂ O	03	TiO ₂ SC	3 Mn) PPc
6	13,6	0,18	0,38	50,8 1,9	9 0,0	0,01	_	0,02	- (0,15 32.9
7	5,30	0,90	0,41	50,7 1,4	4 0,0	0,01	_	0,01	- (0,08 41,1
8	1,31	0,0	0,00	54,1 0,	0,0	0,00	_	0,00	0,0	- 39,7
21	0,74	0,07	0,05	53,1 1,3	32 0,0	0,04	-	-	0,0	- 42,8
23	1,06	0,03	0,29	54,8 0,3	34 -	-	_	-	-	- 43,43
25	3,02	0,04	0,38	53,2 0,	72 -	_	_	-	-	- 43,59
40	1,69	0,26	1,28	34,3 17	,5 0,0	0,0	-	-	0,0	- 43,55

ENSAYOS TECNOLOGICOS MARMOL

NUMERO ESTACION	6	7	8	21	40	Unds.
ENSAYOS						
P.Espec.aparente	2,89	2,73	_	_	_	gr/cm³
C.Absorción	0,19	0,12	-	-	-	%
C.Porosidad	0,56	0,35	-	-		%
M.Heladicidad	9,98	112,9	0,04	0,03	0,01	%
R.Flexión	147	185,2	-	-	-	%
R.Choque	75	45	-	-	-	cm
R.Desgaste	0,12	0,22	7,81	6,73		mm
Microdureza K.	141	136	-	-	-	kg/mm ²
R.Compresión	832	581	_	_		kg/cm ²

3.16. OCRES (OCR)

Bajo este epígrafe se han agrupado las sustancias que por su teórico poder colorante, en este caso óxidos de manganeso, pueden ser susceptibles de utilizarse en la industrIa como pigmentos naturales.

Los puntos inventariados corresponden a los números: 66, 67, 90, 97, obtenidos de un trabajo realizado por el ITGE, sobre el aprovechamiento de los óxidos de manganeso, de las escombreras de antiguas minas, para la obtención de pigmentos industriales.

CUADRO DE INDICIOS OCRES

NUM.	UND. LIT.	HOJA	COOR	DENADAS	ESTADO	RESERVAS	PRODUCCION	USO
			Х	Υ				
66	28	938	694,80	4.184,00	IN	_	-	-
67	28	938	702,90	4.103,40	IN	-	-	-
90	28	959	686,20	4.169,40	IN	-	-	-
91	29	960	705,10	4.168,05	IN		-	-

CLAVES: EA = Explotación Activa, EI = Explotación Intermitente, EB Explotación Abandonada, A = Altas, M = Medias, B = Bajas

La analítica que se realizó, en el curso del antedicho proyecto, consiste en ensayos, de contracción lineal, capacidad de absorción de agua y reabsorción, pruebas de calentamiento en horno. En el actual proyecto se ha completado con análisis químicos. A la vista de los resultados, el ITGE desiste de su utilización, por su poco poder colorante;

reflejado en el bajo contenido de óxidos de manganeso de las muestras, como se indica en el análisis químico de cuadro adjunto.

ANALISIS QUIMICO OCRES

NUM.	$s_i o_2$	A12O3	Fe ₂ O ₃	CaO	MgO	Na ₂	K ₂ O	BaO	TiO2	PbO	ZnO	MnO
66	52,9	18,7	11,20	0,63	2,4	2,3	2,2	3 1,5	1,39	0,6	0,1	2 0,5

Pérdida por calcinación a 1.000: C = 4,45 % (ITGE, 1.982e)

3.17. PIROCLASTOS (PIR)

Se han inventariado cinco estaciones de esta sustancia que son otras tantas escombreras de minas de sulfuros masivos de la Faja Pirítica.

Denominaremos piroclastos al conjunto de los diferentes materiales vulcanosedimentarios que se extraen como ganga en la mina de sulfuros, y que son los sedimentos donde se encuentra la mineralizaciión objeto de beneficio.

CUADRO DE INDICIOS PIROCLASTOS

NUM.	UND. LIT.	HOJA	COOR	DENADAS	ESTADO	RESERVAS	PRODUCCION	uso
			Х	Y				
69	00	938	713,30	4.174,90	IN	Α	-	
70	00	938	689,85	4.175,85	IN	Α	-	-
71	00	938	710,90	4.176,50	IN	Α	-	_
89	00	959	667,20	4.163,50	IN	Α	-	_
107	00	961	745,45	4.155,70	IN	A	-	-

CLAVES: EA = Explotación Activa, EI = Explotación Intermitente, EB = Explotación abandonada, A= Altas, M= Medias, B= Bajas.

El uso que en principio pueden tener estos materiales es el de servir como áridos en obras públicas, bien para la construcción de carreteras o como subbase de las mismas, para lo cual se han realizado ensayos de desgaste de Los Angeles y de contenido en S^{\sharp} .

Los ensayos de desgaste, se han realizado sobre el material como sale de las escombreras, previa tamización, por entender que, dado su escaso valor económico, no sería rentable

su utilización si se precisara añadir cualquier otro proceso industrial, tal como triturado o cribarlo. El aprovechamiento de estos materiales sería factible siempre y cuando pudieran emplearse tal como se encuentran en la escombrera.

ENSAYOS TECNOLOGICOS
PIROCLASTOS

NUMERO	DESGASTE "LOS ANGELES"	GRANULOMETRIA
69	23,8 %	"E"
70	60 %	"E"
71	29,6 %	"E"
89	36,8 %	"E"
107	41,4 %	"E"

ENSAYOS TECNOLOGICOS PIROCLASTOS

NUMERO	CONTENIDO EN Sº
69	0,92 %
70	0,16 %
71	1,9 %
89	0,29 %
107	0,72 %

Se han inventariado dos puntos de tobas volcánicas, 86 y 87, ámbos en la Hoja de Puebla de Guzmán (958), correspondiendo uno a una cantera de extracción de áridos y el otro a una explotación de carácter ornamental. Las dos están inactivas en la actualidad.

CUADRO DE EXPLOTACIONES TOBAS VOLCANICAS

NUM.	UND. LIT.	НОЈА	COOR	DENADAS	ESTADO	RESERVAS	PRODUCCION	USO
			Х	Y				
86	03	958	633,25	4.159,65	EB	Α		04
87	03	958	633,25	4.159,85	EB	В	-	01

CLAVES: EA = Explotación Activa, EI = Explotación Intermitente, EB Explotación Abandonada, A = Altas, M = Medias, B = Bajas

La cantera de áridos, punto 86, es una instalación que se puso en marcha con motivo de la construcción de la presa del Chanza, con objeto de abastecer la planta de hormigones de la obra, cerrándose cuando concluyó ésta.

La otra explotación punto 87, propiedad de Granitos Verdeta, S.A., ha extraído bloques de carácter ornamental. Está parada en la actualidad por falta de calidad de los afloramientos y de las características petrológicas, ya que son muy frecuentes los cambios de color y tamaño de grano, de forma que es muy difícil extraer bloques de tamaño adecuado que conserven una mínima uniformidad.

3.18. PIZARRAS (PIZ)

De los ocho puntos inventariados, tres corresponden a pizarras sericíticas, dos son indicios para uso ornamental, otros dos corresponden a explotaciones abandonadas y otro es una cantera de carácter intermitente.

CUADRO DE EXPLOTACIONES E INDICIOS PIZARRAS

NUM.	UND. LIT.	HOJA	COOR	DENADAS	ESTADO	RESERVAS	PRODUCCION	USC
			Х	Y				
12	19	916	687,20	4.206,70	IN	Α	-	_
35	20	917	692,15	4.204,00	IN	-	-	_
36	20	917	703,50	4.202,00	IN	_	-	_
57	29	936	650,50	4.179,85	EB	М	-	02
91	29	960	680,75	4.162,20	IN	-	-	-
92	28	960	690,10	4.163,25	IN	М	-	01
93	25	960	690,10	4.162,90	EI	М	-	01
105	28	961	740,65	4.156,40	ΕI	M		02

CLAVES: EA = Explotación Activa, EI = Explotación Intermitente, E Explotación Abandonada, A = Altas, M = Medias, B = Bajas

Los indicios de carácter ornamental, puntos 92 y 93 han sido puestas de manifiesto por Minas Almagrera, S.A. dentro de su dominio minero, consecuencia de un proyecto específico de exploración. Están ubicados en las inmediaciones de Sotiel y ligados a una alternancia de pizarras, tobas y tufitas, pertenecientes a los niveles volcanosedimentarios de la Faja Pirítica. Tienen coloraciones variadas, rojo vinosas,

verdes, moradas y grises. En general están muy esquistosadas y muchas veces tienen buena exfoliación.

El primero de éllos corresponde a unas pizarras cineríticas de color verde de grano grueso y de aspecto rugoso, lajan bien aunque el grosor mínimo es algo excesivo para su comercialización como pizarras para cubiertas. Sin embargo, sí podrían ser perfectamente explotables para otros fines, como pavimentos exteriores, jardinería, etc.

El segundo yacimimento beneficia un potente paquete de pizarras negras del Culm, estan asociadas a una sucesión compleja de esquistos, filitas y cuarzo-filitas sericitico-cloríticas, de grano fino. Tiene buenas características de corte, con grosores comerciales que la hacen apta para uso en tejados, fachadas, etc. La cantera presenta un frente no muy amplio, dado que están en labores de limpieza y apertura no habiendo entrado en producción. La montera de estéril es de una potencia aproximada de 8 m, siendo el tamaño de "rachón" aceptable.

ENSAYOS TECNOLOGICOS PIZARRAS ORNAMENTALES

	NEGRAS Estación nº 93	VERDES Estación nº 92
Peso específico	2,73 %	2,77 %
Absorción	1,72 %	1,02 %
R. Flexión	288 kg/cm²	290 kg/cm²
R. Heladas	Negativo	Negativo
Ch. Térmico	Negativo	Negativo
R. Aridos	Negativo	Negativo
% Co ₃ =	1 %	0,0 %

Fuente: Minas de Almagrera

- VARIACION DEL PESO ESPECIFICO (NEGRAS)

Ch. Térmico	• • • • • • • • • • • • • • • • • • • •	0,14 %
R. Aridos		1,22 %
R. Heladas		0.07 %

- VARIACION DE LA FLEXION (NEGRAS)

Ch. Térmico	• • • • • • • • • • • • • • • • • • • •	4,6	%
R. Acidos	•••••	2,36	%
R. Helados		0.87	%

- VARIACION DEL PESO ESPECIFICO (VERDES)

Ch. Térmico	 0,03 %
R. Aridos	 0,82 %
R. Heladas	 0,0 %

- VARIACION DE LA FLEXION (VERDES)

Ch. Térmico		4,5	%
R. Acidos	• • • • • • • • • • • • • • • • • • • •	0,0	%
R. Heladas		37.4	%

Fuente: Mina de Almagrera

En Aznalcollar, Hoja 961, existe una tradicional extracción de pizarras para la construcción, que por sus propiedades, fractura y lajamiento, son fáciles de extraer para su uso como roca de construcción o adorno. La cantera, punto 105, explota unos frentes muy amplios sin ninguna racionalidad, utilizándose en los pueblos próximos como adorno en las vallas y zócalos de las casas. Sus características mecánicas las hacen inviables para cualquier otro uso. El funcionamiento de la cantera es muy esporádico.

En los indicios catalogados como pizarras sericíticas (estaciones nº 12, 35 y 36), se han tomado tres

muestras para analizar, cuyos resultados, se exponen en el cuadro contiguo. Estos valores en principio no son demasiado alentadores por su bajo contenido en alúmina y alto contenido en hierro y sílice, sin embargo dada la amplitud de las rocas aflorantes, no hay que descartar que en estudios posteriores más completos y detallados puedan dar luz sobre la utilidad de ésta sustancia.

ANALISIS QUIMICO PIZARRAS SERICITICAS

NUM.	s,o2	A12O3	Fe ₂ O ₃	CaO	MgO	Na ₂ O	K ₂ O	Cr ₂ O ₃	PPc
12	63,9	20,0	4,96	_	1,0	0,49	4,62	0,1	4,30
35	46,2	15,8	13,9	8,99	7,12	2,51	0,54	0,2	4,30
36	61,9	21,0	4,75	-	3,78	2,17	1,08	0,2	5,80

ANALISIS MINERALOGICO PIZARRAS SERICITICAS

NUM.	Q	Fd	An	Мо	Ve	Pa	Ca
12	×××	tr	-	xx	_	_	tr
35	-	xx	××	-	×	-	-
36	××	_	-	×	×	××	tr

xxx	=	<50 %	Q = Cuarzo	Ve =	Vermiculita
xx	=	20-50 %	Fd = Feldespatos	Pa =	Paragonita
×	=	10-25 %	An = Anortita	Ca =	Caolinita
tr	=	trazas	Mo = Moscovita		

3.19. PORFIDOS (POR)

Sólo se ha inventariado una estación correspondiente a esta sustancia, punto n^0 63, propiedad de Río Tinto, S.A. Explotación abandonada desde hace más de 15 años y utilizada por la empresa para sus propias obras dentro del recinto minero.

La cantera está situada dentro del término municipal de Nerva, al SO, del mismo pueblo.

CUADRO DE EXPLOTACIONES PORFIDOS

NUM.	UND.	ALOH	HOJA COORDENADAS X Y 938 715,35 4.174,1	DENADAS	ESTADO	RESERVAS	PRODUCCION	uso
			Х	Y				
63	22a	938	715,35	4.174,15	EB	Α	-	04

CLAVES : EA = Explotación Activa, EI = Explotación Intermitente, EB= Explotación Abandonada, A = Altas, M = Medias, B = Bajas

3.20. RIOLITA (RIO) Y TRAQUITA (TRA)

De riolita se han inventariado cuatro puntos, de los cuales uno corresponde a una cantera activa, n^0 172 y el resto, puntos: 75, 84 y 102, corresponden a canteras abandonadas o inactivas.

CUADRO DE EXPLOTACIONES E INDICIOS
RIOLITA

NUM.	UND.	ALOH	COOR	DENADAS	ESTADO	RESERVAS	PRODUCCION	USO
			Х	Y				
75	28	939	739,10	4.185,95	EB	Α	_	04
84	28	958	657,25	4.166,75	EB	В	-	02
102	28	961	740,15	4.156,70	EB	Α	-	04
172	28	982	705,30	4.152,50	EA	Α	-	04

CLAVES : EA = Explotación Activa, EI = Explotación Intermitente, E Explotación Abandonada, A= Altas, M= Medias, B= Bajas

La cantera activa, n⁰ 172, explota un frente de unos 70 m de altura en dos bancos, de 80 a 100 m de longitud. El arranque se realiza mediante explosivos, transportados mediante camión a la planta de machaqueo contigua. Se traslada el material ya triturado, a la planta de hormigonado en La Palma del Condado.

En este apartado se ha incluído una serie de puntos puestos de manififesto en un trabajo realizado por el ITGE, para el aprovechamiento de los productos del volcanismo de la Faja Pirítica. Su objetivo era la obtención de aditivos puzzolánicos que sirvieran para la fabricación de cementos.

Las estaciones registradas, puntos números: 41, 27, 72, 73, 74 y 89, están ubicadas sobre paquetes de lavas y

tobas ácidas interestratificadas con pizarras y riolitas. La potencia es muy variable y la continuidad lateral también.

CUADRO DE EXPLOTACIONES E INDICIOS
LAVAS ACIDAS

NUM.	UND. LIT.	HOJA	COORDENADAS		ESTADO	RESERVAS	PRODUCCION	USO
			Х	Y				
41	22	917	692,90	4.196,80	IN	-	-	-
72	25	938	712,25	4.181,70	IN	-	-	-
73	28	938	708,80	4.175,60	IN	-		-
74	26	938	706,10	4.176,00	IN	-	-	_

CLAVES: EA = Explotación Activa, EI = Explotación Intermitente, E Explotación Abandonada, A = Altas, M = Medias, B = Bajas

El ITGE, en los puntos seleccionados, tomó muestras para someterlas a una batería de análisis y ensayos de caracterización, que básicamente consistieron en: análisis químico, grado de finura y ensayos de reactividad con cal, y resistencia, tanto a tracción como a compresión.

Una vez realizada éstos análisis el ITGE no consideró idóneas sus propiedades y características por lo que las descartó como aditivos en cementos puzzolánicos.

ANALISIS QUIMICO LAVAS PUZOLANICAS

NUM.	s ¹ o ₂	A1203	Fe ₂ O ₃	MnO (CaO M	1gO K	(₂ O N	a ₂ O	S	SO ₃ F	PP
72	71,9	10,9	3,7	0,02	0,06	0,8	3,9	1,4	<0,005	<0,00125	2,66
73	73,5	11,2	1,5	0,03	0,01	0,13	8,6	0,3	<0,005	<0,00125	1,88
74	67,5	11,9	3,5	0,14	0,04	0,36	6,7	3,23	<0,005	<0,00125	1,38
41	68,7	12,7	3,5	0,03	0,33	0,53	6,02	4,3	<0,005	<0,00125	0,95

(ITGE, 1.984a)

3.21. WOLLASTONITA (WOLL)

Se han inventariado 9 estaciones para esta sustancia, todas ellas, a excepción de una, han sido identificadas por un trabajo realizado por ENADIMSA, para la Dirección General de Minas, sobre la utilización de las rocas de silicatos cálcicos, en las zonas de Aroche y Santa Olalla del Cala, con un potencial interesante de wollastonita, y donde se ha marcado un meneralotecto en el Mapa de Recursos.

Este mineral es típico de metamorfismo de contacto en calizas, responde a la fórmula ${\rm SiO_3Ca}$ es de color blanco y aspecto fibroso-radiado, que es una de las propiedades que le hacen interesante. Está en relación con la aparición de los mármoles, y aflora fundamentalmente al O y SE de Aroche, dentro del Macizo de Aracena.

CUADRO DE INDICIOS WOLLASTONITA

NUM.	UND.	НОЈА	COOR	DENADAS	ESTADO	RESERVAS	PRODUCCION	USO
			Х	Y				
9	22a	916	680,70	4.199,30	IN	Α		10
13	22a	916	675,20	4.206,90	IN	-	-	10
14	22 a	916	674,85	4.200,85	IN	_	-	10
15	22 a	916	674,20	4.201,10	IN	_	•••	10
16	22a	916	670,40	4.102,85	IN	_	-	10
17	22a	916	671,25	4.202,40	IN	-	-	10
18	22a	916	671,40	4.202,00	IN	_	-	10
19	22a	916	671,50	4.201,80	IN	_	_	10
20	22 a	916	671,65	4.201,75	IN	-	-	10

CLAVES: EA = Explotación Activa, EI = Explotación Intermitente, El Explotación Abandonda, A = Altas, M = Medias, B = Bajas

Los puntos nQs: 13, 14, 15, 16, 17, 18, 19 y 20, todos ellos en la Hoja de Aroche nQ 916, están situados sobre paquetes calcáreos metamorfizados, en contacto muy próximo con granitos, Se ha tomado una muestra de mano, para su análisis químico, y con los porcentajes obtenidos, se ha calculado una norma de composición mineralógica en tantos por ciento de: diópsido, cálcita, wollastonita, cuarzo y otros.

ANALISIS QUIMICO
WOLLASTONITA

NUM.	$s_i o_2$	A1203	CaO F	e ₂ O ₃ MgO	K ₂ O	Na ₂ O	PF
13	1 1	0,90	49,1	0,67 0,75	0,20	0,45	37,4
14	51,20	0,70	41,8	0,66 2,90	0,40	0,08	1,92
15	47,73	0,50	45,5	0,45 0,80	0,22	0,08	4,13
16	57	0,30	39	0,60 0,65	0,12	0,09	2,95
17	46,70	0,20	46,6	0,50 0,50	0,07	0,05	5,52
18	41,20	0,50	45,9	0,86 1,05	0,26	0,08	10,4
19	50,5	0,20	46	0,36 1,60	0,03	0,07	1,51
20	0,95	0,30	53,1	0,32 3,22	0,07	0,08	41,1

COMPOSICION MINERALOGICA NORMAL WOLLASTONITA

NUM.	DIOPSIDO	CALCITA	WOLLASTONITA	CUARZO	OTROS
10	4 02	05 10	0.70	0 26	1 60
13	4,03	85,19	0,79	8,36	1,63
14	15,58	4,36	73,16	4,72	2,18
15	4,30	9,40	81,04	3,43	1,83
16	3,49	6,71	71,12	18,28	0,39
17	2,69	12,55	80,51	3,57	0,68
18	3,64	23,74	64,58	4,67	1,37
19	8,60	3,43	86,69	0,94	0,34
20	-	93,5	0,70	-	1,83

Fuente: D.G.M., 1989

La estación nº 9, está situada dentro de un P. de I. de Minas Almagrera para wollastonitas, en donde los trabajos de investigación daban una zona de alto contenido en dicho mineral. En este permiso se han realizado recientemente trabajos específicos de detalle con cartografía, calicatas. análisis, sondeos y extracción de varias decenas de toneladas mineral, para un ensayo de procesado industrial, colaboración con empresas finlandesas, que son líderes europeos en el sector. Actualmente se está en la fase de estudio para conocer la viabilidad industrial y económico-financiera del yacimiento. Εl mineral se dispone en bolsadas bastante irregulares dentro de un paquete calcáreo, sin estar sometido a ningún control estructural. Este nivel calcáreo tiene una dirección N 120 y 60 NE de buzamiento. En algunos lugares el granito está a menos de 300 metros de distancia en superficie o 100 de profundidad.

En los cuadros siguientes se muestra la analítica realizada dentro del P. de I. (estación n o 9), a partir de muestras tomadas tanto en superficie como en los sondeos que se han hecho.

ANALISIS QUIMICO DE LAS MUESTRAS DEL P. de I. (ESTACION № 9)

MUESTRA	SiO2	Fe ₂ O ₃	MnO	A1203	MgO	CaO	Na ₂ O	κ ₂ O	PC
1	50 5	0 95	Λ 1 Ω	0,88	2 75	41 2	0 11	0 24	2.1
2	49.6	•	•	3,00	•	•	•	•	_ ,
3	50,4	•	·	1,08	•	•	•	•	1,7
4	46,1	0,50	0,13	0,55	1,41	45,0	0,06	0,18	5,2
5	51,1	0,41	0,06	0,48	1,01	45,4	0,10	0,23	1,0
6	53,6	1,85	0,18	2,17	0,55	38,8	0,39	0,67	1,7
7	52,4	0,57	0,16	0,36	0,54	43,8	<0,02	0,11	1,2

Fuente: D.G.M., 1989

MUESTRA	SiO2	Fe ₂ O ₃	MnO	A1203	MgO	CaO	Na ₂ O	K ₂ O	PC
8	48,9	0,84	0,13	1,93	1,75	41,1	0,15	0,73	3,8
9	44,6	0,42	0,16	1,90	0,94	43,9	0,16	0,79	6,2
10	50,8	0,61	0,13	1,57	0,84	44,1	0,11	0,11	0,9
11	49,8	0,40	0,11	0,38	1,01	46,5	0,06	0,05	1,5
12	50,3	0,46	0,11	1,97	0,40	42,6	0,33	0,75	2,7
13	48,0	0,60	0,12	1,58	0,40	44,9	0,28	0,29	3,0
14	47,8	0,53	0,14	0,60	0,65	46,0	0,06	0,05	4,0
15	49,4	0,51	0,14	0,60	2,53	44,3	<0,02	<0,02	2,4
16	49,4	0,78	0,15	0,42	1,13	43,9	0,11	0,24	3,8
17	56,1	0,50	0,07	0,58	1,01	40,2	0,11	0,44	0,8
18	49,0	0,76	0,10	0,43	0,73	45,3	0,09	0,07	3,4
19	52,1	0,65	0,16	0,75	0,44	42,50	0,30	0,26	0,2

PARAMETROS INDICATIVOS DE LA PUREZA DE LAS MUESTRAS DEL P. de I.

N	P.C.	CaO (CaCO ₃)	CaO (CaSio ₃)	SiO ₂ (Casio ₃)	SiO ₂ /CaO (Teór.1,07)	%Wollastonita
1	2,11	2,69	38,51	41,20	1,31	79,7
2	3,51	4,47	36,11	38,64	1,37	74,7
3	1,72	2,19	42,42	45,39	1,19	87,8
4	5,23	6,64	38,36	41,04	1,20	79,4
5	1,02	1,29	44,11	47,20	1,16	91,3*
6	1,77	2,25	36,55	39,11	1,47	75,7
7	1,20	1,52	42,37	45,34	1,24	87,7
8	3,85	4,89	36,26	38,79	1,35	75,1
9	6,29	7,99	36,00	38,52	1,24	74,5
10	0,98	1,24	42,89	45,89	1,18	88,8
11	1,56	1,98	44,54	47,66	1,12	92,2*
12	2,79	3,54	39,06	41,79	1,29	80,8

		(CaCO3)	(CaSio3)	(Casio ₃)	SiO ₂ /CaO (Teór.1,07)	%Wollastonita
13	3,00	3,81	41,18	44,06	1,17	85,2
14	4,07	5,17	40,88	43,74	1,17	84,6
15	2,43	3,09	41,26	44,15	1,20	85,4
16	3,82	4,85	39,07	41,80	1,26	80,9
17	0,87	1,10	39,16	41,90	1,43	81,1
18	3,49	4,43	40,87	43,73	1,20	84,6
19	2,65	3,36	39,14	41,88	1,33	81,0

FUENTE : Dirección General de Minas, 1.988

4 II	MPACTO	AMBIENTA	L

4.1. INTRODUCCION

En general las explotaciones de Rocas y Minerales Industriales, por su naturaleza y modo de extracción, suelen tener un impacto medioambiental apreciable, no sólo durante el período o tiempo de actividad, si no también una vez que ha cesado definitivamente ésta.

Esto es así porque en la mayor parte de los casos los tonelajes son muy altos, y por tanto el volumen o hueco dejado es considerable, y esta "cicatriz" si no se rehabilita de alguna manera, no tiene recuperación posible y queda en el paisaje de forma permanente.

Durante la realización del trabajo, para cada punto de extracción, en la ficha correspondiente se han ido valorando una serie de parámetros medioambientales que se pueden resumir, en los siguientes grupos:

Visibilidad y alteración del paisaje.

- Ruidos y polvos.
- Aguas subterráneas y superficiales.
- Vibración por explosivos.
- Vegetación.

A continuación y para cada grupo de los anteriores se describirá su incidencia en las explotaciones y canteras de la zona de trabajo.

4.2. VISIBILIDAD E IMPACTO AMBIENTAL

La alteración del paisaje es la consecuencia más frecuente y de las más importantes, que producen las extracciones e instalaciones de rocas industriales.

Este impacto se produce por la apertura de frentes de grandes dimensiones, por un lado y además por el intenso contraste cromático entre el frente abierto y el entorno, esté o no cubierto por algún tipo de manto vegetal o arbustivo, si a esto se une que es frecuente que las canteras estén en zonas elevadas topográfiamente y de abundante vegetación, la consecuencia sobre el paisaje y el impacto visual se torna muy elevada.

En este caso pueden estar tanto las explotaciones de áridos en los que el arranque se realice por explosivos, como las de carácter ornamental, ejemplo de estos últimos están situados en la Sierra de Aroche, puntos 6, 8, 21, 22, 23 y 24.

Otro tipo de canteras con fuerte impacto visual y paisajístico son las graveras dedicadas a la extracción de áridos naturales instaladas normalmente en las riberas de los ríos y sobre las llanuras de inundación de éstos. Un ejemplo característico se detecta en los ríos Guadalquivir, puntos 110, 120, 122, 118 y 119; Guadiamar, puntos: 185, 186 y 187; Tinto, puntos: 160, 166, 167 y 173 y Ribera de Huelva, puntos: 112, 116 y 124. En todos estos casos los volúmenes extraídos son muy

considerables, tanto en la actualidad como en un pasado reciente. Los huecos y hoyos dejados además de ser de grandes dimensiones suelen acabar como basureros ilegales.

Otro factor a considerar son las escombreras de estériles de las explotaciones, que suelen perjudicar el paisaje en el lugar donde están depositados.

Hay que destacar también, que en la mayor parte de los casos, la capacidad de autoregeneración de las explotaciones es muy baja. Primero por la esterilidad del terreno puesto al descubierto y segundo por lo abrupto de las formas generadas, esto es especialmente apreciable en áreas de extracción de granito, mármol, etc. Sin embargo, en las zonas de extracción de áridos en ríos, éste impacto queda a menudo algo minimizado, por estar en zonas relativamente deprimidas, y además de gozar de mayor humedad, por lo que la vegetación se desarrolla con más intensidad.

En cuanto a medidas de corrección y/o rehabilitación, éstas son escasas o nulas. Unicamente las empresas que tienen graveras en los ríos, están obligadas a tapar el hueco dejado con la tierra que han quitado previamente del recubrimiento que la zona poseía.

Hay que tener destacar la excepción de la cantera de caliza propiedad de Cementos ASLAND S.A., en Niebla, punto 40, en la que sí se realizan labores de recuperación del terreno; realizando rellenos de tierra, tendiendo taludes, y con posterior plantación de árboles.

4.3. IMPACTO POR RUIDO Y POLVO

La generación de éstos impactos están ligados a dos procesos extractivos y a uno industrial. Entre los primeros destacan las canteras de granito y mármol con fines ornamentales, y las dedicadas a la trituración de áridos, con arranque mediante explosivos. Entre los segundos, los procesos industriales ligados a las plantas de elaboración de áridos que normalmente están en las mismas canteras de extracción.

El ruído es una consecuencia inevitable, cuando se utilizan martillos perforadores, tanto para la extracción de bloques en canteras ornamentales, para cuadreo y retaqueo de frentes, como en los de áridos para preparar las grandes voladuras, pero al estar alejadas de los centros de población, el impacto es mínimo.

Igualmente ocurre con el ruído de las plantas de trituración y machaqueo, que son generalmente de gran potencia y tamaño y por lo tanto muy ruidosas, pero están casi siempre lejos de los pueblos y ciudades, por lo que su incidencia no es significativa.

Los productores más importantes de polvo, son las plantas trituradoras de áridos, al moler los grandes bloques, producto de las voladuras, para producir los áridos de las diferentes granulometrías y tamaños.

Estos molinos, de no estar equipados por sistemas de riego de agua que amortiguen algo el polvo producido, son una fuente importante de sólidos en suspensión. Estas partículas sólidas por acción de las corrientes dominantes del aire, pueden producir un alto impacto sobre la vegetación al depositarse sobre ella.

Las canteras de rocas ornamentales también producen polvo, pero en cantidades menores que las anteriores. Además el volumen de material que se mueve es mucho menor.

4.4. VIBRACIONES POR EXPLOSIVOS

Este fenómeno se registra en las canteras de áridos con arranque de material para trituración. En éstas se dan grandes voladuras, para liberar grandes volumenes de material. En general el impacto que producen por vibración no es muy grande, ya que éstas voladuras son muy espaciadas, normalmente 2 al mes y como mucho una a la semana. Además están alejadas de centros urbanos, por lo que las consecuencias para bienes y personas es escasa.

En las explotaciones de granito y mármol, para ornamentales también se utilizan explosivos, pero en cantidades muy inferiores al del anterior tipo de canteras, aunque con mayor frencuencia, e igualmente que en el caso anterior, no tienen incidencia sobre las personas y propiedades.

Las explotaciones que presentan este tipo de impacto ambiental son los puntos 8, 46, 47, 48, 114 y 124.

4.5 IMPACTO SOBRE LAS AGUAS SUBTERRANEAS Y SUPERFICIALES

Las explotaciones que mayor impacto producen por este concepto son las de extracción de áridos a partir de graveras, ya que al estar muy próximas a los cauces, o dragar el mismo canal, altera de forma sensible el régimen hídrico de las aguas. Un ejemplo de éllo es la gravera situada en Alcalá del Río, punto 112.

De igual forma se puede producir un problema de contaminación por aprovechar el hueco existente de las explotaciones para vertido incontrolado de resíduos industriales

o urbanos, como basuras, aceites industriales, etc., con el consiguiente peligro. El hecho de que existan numerosas canteras de gravas prácticamente lindando unas a las otras, hace que el riesgo se multiplique.

Las zonas con mayor riesgo son: el río Guadalquivir en la zona de San José de la Rinconada, puntos 110, 120, 122, 118 y 119; en el río Guadiamar, en los alrededores de Sanlúcar la Mayor, puntos 185, 186 y 187; en la Ribera de Huelva, en el municipio de la Algaba, puntos 116, 117 y 124, y el río Tinto a su paso por Niebla, puntos 160, 166, 167 y 173.

El resto de canteras y extracciones, al tratarse de substratos rocosos impermeables, el riesgo está bastante amortiguado, por que la infiltración es mínima.

En cuanto a la incidencia de aguas superficiales, se puede considerar que el impacto no es demasiado alto, únicamente se pueden observar efectos de arrastre de sólidos, por lavado de escombreras en las estaciones situadas en conos fluviales, punto 96 (Las Gamonosas) y al Norte de Niebla, punto 94.

Al Norte de Beas, en una zona de extracción de arenas se están desarrollando incipientes procesos de acarcavamiento por la extracción de dichas arenas. Previamente a este proceso se tala la cobertera vegetal formada por arbusto bajo y eucalipto, con lo que al desaparecer esta protección la escorrentía puede adquirir valores muy altos. Los puntos más significativos en que se observa este proceso, son los números 170, 171, 178, 180, 181 y 183.

4.6 VEGETACION

El impacto sobre la vegetación, está más desarrollado y es importante en las zonas de explotación de canteras de rocas ornamentales, de granito y mármol. En la Sierra de Aroche, existen gran cantidad de árboles; los proyectos de explotación incluyen planes de restauración, dónde se prevé la replantación de la cobertera vegetal autóctona que existía previamente.

En la gran mayoría de las explotaciones, al estar ya la cubierta vegetal muy poco desarrollada o degradada, el impacto producido no es demasiado importante, bastando en muchos casos con el cese de la actividad para que al cabo de pocos años se minimicen de forma apreciable los efectos de la explotación.

4.7. AREAS PROTEGIDAS

La Junta de Andalucía, por medio de la Consejería de Obras Públicas y Urbanismo, ha realizado un Plan Especial del Medio Físico y Catálogo de las provincias de Huelva y Sevilla, en que se clasifican, delimitan y describen, las diferentes categorías de áreas protegidas, su interés y la legislación desarrollada al respecto. También se especifican los tipos de usos y actividades que se pueden realizar dentro de cada área.

Estas figuras de protección son básicamente cinco y se denominan: Complejos Serranos, Areas Forestales de Interés Recreativo, Complejos Ribereños, Paisajes Sobresalientes y Paisajes Agrarios Singulares. En éllas se definen y delimitan 42 áreas de interés para las hojas de estudio.

Las figuras que más pudieran incidir en el futuro sobre posibles aprovechamientos, serían, por un lado los Complejos Serranos y las Areas Forestales de Interés. Por otro los Complejos Ribereños, donde por ejemplo pudieran instalarse canteras de gravas.

Por último en el citado Plan se refunde y ordena toda la legislación vigente de aplicación sobre éstas áreas.

5.- VALORACION MINERO-INDUSTRIAL

5.1. DISTRIBUCION DE LA PRODUCCION

La superficie que cubre las hojas de estudio, está ocupada en dos tercios por la provincia de Huelva, y en un tercio por la de Sevilla, estándo Badajoz representada por una pequeña área al Norte de la Hoja.

Todas las sustancias que se extraen en la actualidad van destinadas a la construcción en sentido amplio, éstas se dividen en tres subsectores básicos: rocas ornamentales, áridos de trituración y arcilla común para cerámica estructural.

Por provincias, Huelva tiene una capacidad de producción de 1.503.790 Tn. y Sevilla de 5.819.200 Tn. Se aplica el término "capacidad de producción", porque los datos presentados están obtenidos en su mayoría de las propias empresas, y de la estimación "in situ", y no tanto de las cifras oficiales de producción que se calculan a años vencidos.

A continuación, en los cuadros siguientes se enumeran las producciones por sustancias y provincias, además de las cifras de todas las sustancias y de toda la superficie de las provincias, con número de trabajadores, valor de la producción, etc.

HUELVA

SUSTANCIA	Nº de expl.	Empleo total	Producción (t)	Valor (M.Pta)	% s/valor	% acumul.
Caliza	8	24	588.264	142,7	0,7	99,2
Pórfidos	1	9	170.000	68,0	0,3	99,5
Otros prod.cant.*	11	18	324.858	63,9	0,3	99,8
Arcilla	12	16	154.230	22,2		
Granito	1	9	804	9,7	0,2	100

FUENTE: Junta de Andalucía, 1988c.

SEVILLA

					_	
SUSTANCIA	Nº de expl.	Empleo total	Producción (t)	Valor (M.Pta)	% s/valor	% acumul.
Attapulgita *	1	20	21.413	219,9	2,7	96,9
Productos de cant.	7	20	203.200	86,5	1,1	98,0
Arcilla	20	26	166.990	56,6	0,7	98,7
Piedra pómez *	2	5	111.858	40,2	0,5	99,2
Yeso *	7	15	60.500	30,8	0,4	99,6
Sal manantial	2	5	13.066	25,7	0,3	99,9
Granito	3	9	6.593	15,0	0,1	100,0

DISTRIBUCION DE LA PRODUCCION

SUSTANCIA	HUELVA	SEVILLA
ALBERO		400.000 m ³
ARCILLA	107.000 Tn	94.200 Tn
ARENA	86.000 Tn	
CALIZA	564.000 Tn	

FUENTE: Junta de Andalucía, 1988c (*) Estas sustancias se extraen fuera de las hojas

SUSTANCIA	HUELVA	SEVILLA
RIOLITA	220.000 Tn	
DIABASA	200.000 Tn	
ESCORIA		
GRANITO	17.490 Tn	1.450.000 Tns
GRAUWACA	250.000 Tn	
MARMOL	9.300 Tn	
PIZARRA		
ZAHORRA		
GRAVA	50.000 Tn	4.275.000 Tns

Fuente: Junta de Andalucía (1988c)

5.2. USOS Y DESTINOS DE LA PRODUCCION

ALBERO

- <u>Ornamentación</u>

Ha sido el principal uso histórico que ha tenido esta sustancia, utilizándose básicamente para jardinería, parques, plazas de toros, pistas de tenis, etc.

- Subbase granular

En la actualidad y desde hace unos pocos años, se emplea éste material como subbase en los arreglos de caminos rurales, por su gran capacidad de compactación y su poder filtrante. Su utilización es masiva en toda la provincia de Huelva y Sevilla.

Igualmente se está destinando a los caminos de servicios laterales de grandes carreteras y autovías.

Todo el albero en la actualidad se extrae de Alcalá de Guadaira, y se estima una producción de 400.000 m^3 .

ARCILLAS

Cerámica estructural

Las cifras de consumo de arcilla para ladrillos y tejas se estima en 201.200 tn, que parecen adecuadas para la capacidad de consumo instalada, existiendo en la actualidad seis fábricas.

Todas las canteras benefician las arcillas y margas arcillosas de los sedimentos terciarios de la Depresión del Guadalquivir.

Como excepción existen dos cerámicas que fabrican ladrillo artesanal, para fachadas y jardines. Se moldea a mano, se seca al sol y se cuece en horno árabe. Están situadas una en Beas (Cerámicas Leñero), y otra en Sevilla (Cerámica Rosía); ésta última exportaba prácticamente toda su producción a Irak.

ARENAS

Aridos naturales

Todas las explotaciones de arenas, tienen como destino la construcción, son de ámbito muy local y en general de carácter intermitente. Un ejemplo de ello son las explotaciones situadas al Norte de Beas, que explotan unas arenas cuaternarias (Und. 37), que sólo funcionan en los meses de verano. La producción es muy difícil de

determinar. Generalmente carecen de permiso administrativo, en el sentido de ser el resultado de un acuerdo con el propietario del terreno para extraer el árido, talándole los eucaliptos plantados, con las consecuencias medioambientales previsibles.

Otra zona de extracción es Gibraleón (Und. 31), donde las explotaciones son más permanentes. Estas soportan una dura competencia de las canteras de la zona costera, más cerca de las áreas de consumo y de mejor calidad. Por lo tanto la actividad de estas canteras están en declive. No obstante producen unas 55.000 Tn/año.

CALIZAS

Aridos de trituración

Este sector industrial extrae la totalidad de la producción de calizas paleozoicas del Macizo de Aracena (Und. 21b), estando destinadas a la construcción de carreteras para su utilización como aglomerado asfáltico. Una pequeña parte se destina a la fabricación de hormigones. La producción declarada es de 64.000 tn/año, aunque se puede estimar que esta cantidad es inferior a la realidad.

- Cementos

Es el otro gran sector de consumo, monopolizado por ASLAND, S.A. para su fábrica de Niebla. En esta localidad se explota una cantera de caliza margosa bioclástica (Und. 32), situada en las inmediaciones de la misma fábrica. La producción eclarada es de 500.000 Tn/año.

DIABASAS

- Aridos de trituración

Es el sector de mayor consumo de este material, que se destina fundamentalmente, a la obra pública y a la fabricación de hormigones.

La mayor empresa extractora de esta sustancia es Torres Gallardo, S.A., que explota una cantera (nQ 64), donde beneficia unas diabasas (Und. 26), que son tratadas "in situ" en una planta de machaqueo.

Hay otra cantera que de forma intermitente también extrae éste material para áridos de trituración, pertenece a la empresa Transportes y Aridos Macías, S.A., siendo ésta explotación de poca entidad.

- Ornamentales

Destinado a la extracción de rocas ornamentales es el indicio nº 58, situado en el dominio minero de Rio Tinto, S.A. Esta misma empresa va a poner en explotación ésta cantera, enclavada dentro de una antigua mina de sulfuros a cielo abierto.

Es un material interesante de color verde oscuro y grano fino, el proceso de corte se realizará por medio de hilo diamantado.

Dado que está en la fase de apertura, y lo novedoso del material no se tiene previsión de producción, aunque dadas sus características puede tener un amplio mercado tanto en España como en el extranjero.

GRANITOS

- Ornamentales

Este grupo y este subsector representa una de las sustancias con mayor futuro dentro de la Hoja, tanto por la calidad del material extraído, de nombre comercial "Negro Santa Olalla", como por las posibilidades extractivas de estas canteras.

Todas las explotaciones en actividad, están ubicadas en los alrededores de Santa Olalla del Cala (Huelva) y benefician el mismo tipo de granito (Und. 4). En general están bien mecanizadas y con personal experto, destinándo mercado nacional tanto a1 como 1a producción exportación. Los usos principales para los que se destina son: revestimiento de exteriores, solerías y funerario.

La cantera de mayor tamaño es la regentada por MUGOSA, S.A., perteneciendo las restantes a EXTRACCIONES TOMIÑO, S.A. y ROCAS GRANITICAS DEL SUR. Esta última empieza su actividad. La producción para todo el sector se estima en $3.800~\text{m}^3/\text{anuales}$.

- Rocas de construcción

Son numerosos los puntos de extracción de granito que se destina a roca de construcción, exceptuando el área de Gerena (Sevilla) todas son de carácter muy local e intermitente. En éstas áreas se extrae y elabora el material a medida que se necesita. Las zonas de mayor abundancia de este tipo de cantería son Aroche, Escalada, Gil Marquéz y El Ronquillo, todas son canteras de reducido tamaño.

El pueblo sevillano de Gerena es el que mayor producción sostiene por ser un lugar de cantería histórica y tradicional (Und. 6). Produce bordillos, adoquines, losas, etc. La cantera más importante es propiedad de la Cooperativa de Canteros de Gerena, que es la que extrae, fabrica y comercializa los productos. Sus explotaciones son poco activas, aunque con motivo de la Expo'92 y obras colaterales se ha revitalizado algo la producción, que puede suponer para un año normal unos 150.000 adoquines y 25.000 metros lineales de bordillo. Estas cifras equivalen a unos 1.500 m³. Los centros de consumo son preferentemente Sevilla y provincias adyacentes.

Aridos de trituración

Este subsector industrial es el que absorbe mayor cantidad de esta sustancia. Cuenta con instalaciones modernas y de alta capacidad de producción, que se abastecen de canteras de grandes dimensiones y altamente tecnificadas.

La empresa más importante es GEVA, S.A., que tiene la planta y la cantera situada en Gillena y beneficia un granito de grano fino (Und. 6), con una producción estimada de 1.200.000 Tn/año.

Otra de las empresas importantes es FICOAN, S.A., que explota el mismo granito que la anterior (Und. 6), con una producción de 500.000 Tn/año.

Por último en la zona de Gerena (Und.5) AUCON, S.A., explota este granito para áridos de trituración, con una producción de 250.000 Tns.

Todas estas empresas abastecen de áridos la construcción y la obra pública de Sevilla y alrededores, estando esta demanda muy sobredimensionada al alza por las obras en curso, Expo'92, autovías, puentes. Se prevé una fuerte disminución en la producción cuando éstas obras finalicen.

GRAVAS, ARENAS Y ZAHORRAS

- Aridos

Este subsector es el que en la actualidad mayores volúmenes de material mueve, por la alta demanda existente en el mercado. Las empresas benefician las gravas y las arenas cuaternarias (Und. 37), de los cauces fluviales y de las llanuras de inundación de éstos, fundamentalmente en los ríos Guadalquivir y Guadiamar.

El aprovechamiento es máximo, ya que las gravas se utilizan bien en bruto, ó bien clasificadas o trituradas para la fabricación de hormigones y obra pública en general. Hay que destacar que la arena obtenida como subproducto del proceso para muchas empresas es un material estéril dado el bajo precio del mismo y el volumen que ocupa.

La mayor parte de éstas explotaciones están alquiladas o son propiedad de las grandes empresas constructoras que operan en la zona. Estas empresas son: HUARTE Y CIA., ENTRECANALES, DRAGADOS Y CONSTRUCCIONES, etc., o bien son propiedad de los grandes fabricantes de hormigón, como por ejemplo PIONEER, S.A., HORMIGONES DEL SUR, etc.

Este subsector está actualmente muy sobredimensionado para atender la alta demanda estructural de áridos, debido a las obras en curso, pero se preven dificultades para éste una vez que las obras hayan finalizado.

ZAHORRAS

Esta sustancia de escaso valor económico, se utiliza en ámbitos muy locales como relleno en la construcción y pequeñas obras públicas, para arreglos de carreteras vecinales, caminos rurales, etc.

La zona de extracción más característica está situada en Niebla, extrae los depósitos del río Odiel (Und. 27), éste punto es muy tradicional en cuanto a la extracción de esta sustancia.

Las empresas extractoras constan de pequeños contratistas de ámbito muy local, que previo permiso al Ayuntamiento sacan lo que les hace falta. Todas las canteras son de carácter intermitente y estacional. La producción es muy variable y difícil de cuantificar.

ESQUISTOS

Aridos de trituración

Esta sustancia ha sido empleada muy frecuentemente como árido y de la que existen varias canteras, aunque en la actualidad sólamente se encuentra una en activo. Dicha cantera está regentada por Rafael Morales, S.A. Beneficia un potente paquete de grauwacas (Und. 29), que destina a la producción de áridos de machaqueo y a la fabricación de aglomerados asfálticos. La producción es de 250.000 Tn/año.

MARMOLES

Todas las canteras inventariadas están ubicadas todas en la Sierra de Aroche (Huelva) y benefician unos paquetes cálcareos metamórficos de potencia variable y longitud kilométrica (Unds. 21, 22, 22a, 22b), como roca ornamental.

La explotación más importante es la mantenida por Mármoles Cerroblanco, S.A., que produce entre 500 y 600 m³/año, en bloques comerciales de mediana calidad. Los bloques se elaboran en la fábrica que esta misma empresa posee a pié de cantera; es un mármol blanco verdoso veteado conocido comercialmente como "Verde Alga".

Otro punto importante de extracción de bloque ornamental es la Cantera del Carmen, propiedad de Mármoles de Aroche, que está en fase de apertura. Una vez entre en funcionamiento normalizado puede producir unos $2.000~\text{m}^3/\text{año}$.

Todas las canteras activas, como las intermitentes, producen bloques de tamaño comercial; una vez aserrados, se emplean en revestimientos, suelos, fachadas, mostradores, etc. En total se estima una producción global de $3.600\,\mathrm{m}^3/\mathrm{año}$.

SUSTANCIA	PRECIO (Pta)	UNIDAD	
ALBERO ARCILLA ARENA GRANITO GRAVA	400 1.500 - 2.000 400 35.000 800	m ³ tn m ³ m ³ m ³	
MARMOL	60.000	m ³	

5.3. VALORACION

Como se ha dicho anteriormente, toda la producción de rocas y minerales industriales está destinada a la construcción, en forma de rocas ornamentales, áridos naturales y de trituración y arcilla común para cerámica estructural. De todo esto se deduce:

Primero: que todas las sustancias son de bajo valor económico y que únicamente presentan cifras de facturación muy altas por los grandes volúmenes que moviliza y no por el valor añadido o por el mayor grado de elaboración que pudieran presentar. Segundo: la ausencia actual de explotaciones de minerales industriales de alto valor económico o estratégico, que suministren materia prima a sectores de los denominados de "tecnología punta". Estos son los que representan en la actualidad а la minería moderna en los países industrializados. como tierras son: raras, radiactivos, minerales para la fabricación de ordenadores, arcillas especiales, etc.

Otra característica que se deduce del panorama minero de las rocas industriales, es su dependencia directa y extrema de un sector tan sensible como el de la construcción, sometido a fuertes variaciones cíclicas. Este aspecto se contempla claramente en las obras de la Expo'92 que implican una demanda puntual muy alta, con lo que el número de canteras ha aumentado mucho para satisfacer dicha demanda; dicha actividad extractiva deberá de sufrir un recorte muy importante cuando las obras, y por lo tanto la fuerte demanda, finalicen.

Esto mismo se puede aplicar al sector ladrillero, con una capacidad de producción instalada muy superior a la demanda en tiempos normales.

Uno de los sectores con mayores perspectivas es el de las rocas ornamentales, por el alto valor que alcanzan los productos en cantera, dándose la circunstacia además de que el número de canteras y la capacidad de éstas es inferior a la potencialidad de la zona.

Por último caben destacar tres tipos de sustancias como son las pizarras ornamentales, la wollastonita y las arenas silíceas donde los indicios detectados son prometedores, siendo muy extensa el área donde investigar nuevas zonas potenciales.

6.- RESUMEN Y CONCLUSIONES

6.1. EXPLOTACIONES

En las hojas 1:200.000 de Puebla de Guzmán (nQ 74) y Sevilla (nQ 75), se han reconocido un total de 354 puntos, de los cuales se han inventariado 245 como lugares donde se ha realizado o se realiza alguna actividad de extracción, bien de forma intermitente o continuada. Se han dividido también otros 127 puntos, que suponen un 35,8% de los reconocidos, que no se han considerado importantes y, por tanto, no se han inventariado.

De las estaciones inventariadas, 61 están en activo, 32 trabajan de forma intermitente, 94 están paradas o abandonadas y 55 corresponden a indicios.

Si agrupamos las activas e intermitentes con respecto al total de las inventariadas, excluídos los indicios, se obtienen las activas que suponen el 50% del total.

				 -
SUSTANCIA	ACTIOS	INACTIVOS	INTERMITENTES	INDICIOS
ALBERO	3	1	-	-
ARCILLA	15	23	4	1
ARENAS	3	7	11	-
ARENAS SIL.	-	-	-	4
CALIZAS	4	15	1	1
CAOLIN	-	1	-	-
CUARZO	_	3	_	1
DIABASA	2	2	-	1
ESCORIA	-	_	1	-
FLUORITA	_	1	-	_
GRAFITO	-	1	_	4
GRANITO	7	14	2	3
GRAUWACA	1	4	1	-
GRAVAS	20	4	6	-
LAVAS PUZZ.	_	-	_	.4
MINERALES	4	3	1	1
OCRES	-	-	-	4
PIROCLASTOS	-	-	-	5
PIZARRAS	-	2	1	5
PORFIDOS	1	_	4	_
RIOLITA	1	3	-	_
T.VOLCANICAS	-	2	-	_
WOLLASTONITA	-	-	-	9
ZAHORRA	-	5	4	-

6.2. SUSTANCIAS

En las hojas objeto de estudio se explotan las siguientes sustancias, tanto de forma continuada como intermitente:

Albero
 Arcilla
 Arena
 Caliza
 Escoria
 Granito
 Grava
 Esquisto

- Mármol

Las sustancias que ha continuación se citan, se han explotado anteriormente, pero en la actualidad están paradas:

- Caolín - Grafito - Cuarzo - Pórfidos - Fluorita - Piroclastos

Sustancias de las que se han reconocido indicios, pero de las que no existe explotación alguna:

- Ocres

- Diabasa

- Wollastonita.
- Arenas silíceas

6.3. CONCLUSIONES

- A excepción de las grandes canteras para áridos, propiedad de grupos constructores importantes, las explotaciones carecen de la más mínima base o infraestructura de investigación geológica.
- En general se puede afirmar que el grado de mecanización es adecuado.

- Con la excepción de las canteras a que se refiere el primer párrafo, la propiedad y gestión de las explotaciones es de carácter familiar o reducida.
- Todas las extracciones se realizan a cielo abierto.
- Con alguna excepción, no se llevan adelante los planes de restauración medio-ambiental.
- El uso de toda la producción de las explotaciones situadas en las bajas destinada a la construcción, en pudiéndose subdividir amplio. en tres sectores: ornamentales áridos У de construcción. arcilla У estructural.
- Se ha señalado un litotecto para granitos ornamentales que ocupa los afloramientos de granitos y granodioritas de Santa Olalla del Cala.
- Igualmente se han señalado como litotectos de rocas para la construcción, los afloramientos graníticos de Gil-Marquez, Escalada, El Berrocal y Gerena.
- Para mármoles se han señalado dos litotectos, en Aroche y Los Marines respectivamente, aunque en toda la Sierra de Aracena son frecuentes las intercalaciones marmóreas, no se han cartografiado ni señalado como litotectos por su imposibilidad de representación en mapa dada la escala. En todo caso las posibilidades son altas, si se realizan los trabajos específicos que pongan de manifiesto las áreas y paquetes más interesantes.
- En cuanto a arcillas ceramicas comunes, se ha señalado un litotecto que abarca parte de los sedimentos terciarios de la Depresión del Guadalquivir, en los alrededores de Gibraleón, la Plama del Condado y Sanlúcar la Mayor.

- Se ha señalado un litotecto posible para arenas silíceas en la parte Sur de la Hoja de Sevilla sobre sedimentos terciarios. Aunque la analítica realizada es satisfactoria, dada la extensión del área y los cambios laterales de facies, harían falta trabajos mucho más específicos en contenido y escala, para delimitar con exactitud, y fiabilidad, las áreas favorables.
- Se ha señalado también un litotecto comprobado para albero, ubicado en los afloramientos de calcarenitas miocenas del suroeste de Sevilla, en la localidad de Alcala de Guadaira, donde estan ubicadas en la actualidad todas las canteras en activo de esta sustancia.
- Para áridos no se ha señaldo ningún litotecto puesto que las áreas de afloramiento son muy abundantes y las reservas muy altas.
- Para wollastonita se ha señalado un mineralotecto posible sobre la banda de calizas marmóreas cámbricas aflorantes al SO de Aroche.
- Las pizarras ornamentales puestas de manifiesto por Minas de Almagrera. se consideran que es un indicio muy interesante, tanto por **e**1 material como por afloramiento. Para su extracción y comercialización, sin embargo no se señala ningún litotecto porque se entiende que la dificultad de la exploración en pizarras es alta, y además los afloramientos de pizarras son muy extensos, por lo que se deberán realizar trabajos específicos de detalle, como por ejemplo, estratigráficos y estructurales para delimitar áreas favorables.
- Similar planteamiento se puede realizar respecto del grafito, ya que por la abundacia de indicios y las numerosas referencias en la bibliografía geológica sobre la presencia de ésta sustancia, se deberán realizar trabajos

de detalle tales como: cartografías estructurales, estratigráficos, etc., que permitan la configuración de un modelo que como herramienta de trabajo, ponga de manifiesto el verdadero potencial minero del área en esta sustancia.

7	BIBLIOGRAFIA	

- BARD, J.P. (1969).- Le metamorphisme régional progressif des Sierras d'Aracena en Andalousie occidentale (Espagne). Sa place dans le segment hercynien sub-ibérique. Thése Doct. Univ. Montpellier, 355 p.
- CRESPO-BLANC, A.; FONSECA, P.; OLIVEIRA, J.T.; QUEDADA, C. (1991).- Significado geodinámico del límite entre las zonas de Ossa Morena y Surportuguesa. XI Reunión sobre Geología del Oeste Peninsular. Ligro guía de la excursión.
- DELGADO, M.; LIÑAN, E.; PASCUAL, E.; PEREZ LORENTE, F. (1977).—
 Criterios para la diferenciación de dominios en Sierra
 Morena Central. Studio Geol. Salm., 12:75-90.
- DIRECCION GENERAL DE MINAS (1988).- Investigación de Wollastonita en Aroche (Huelva).
- DIRECCION GENERAL DE MINAS (1989).- Prospección de Wollastonita en los P.I. de Aroche (Huelva).
- I.T.G.E. (1961).- Investigación de la Mina Marbella de Benavebís (Serranía de Ronda) y Grafito de Campotejar (Granada).
- I.T.G.E. (1972a).- Mapa Geológico de España E. 1:200.000, Hojanº 74 (Puebla de Guzmán). Serv. Pub. Min. Ind. Madrid.
- I.T.G.E. (1972b).- Mapa Geológico de España E. 1:200.000, Hojanº 75 (Sevilla) Serv. Pub. Min. Ind. Madrid.
- I.T.G.E. (1972c).- Investigación minera de la zona norte de la reserva estatal "Suroeste". Dirección General de Minas.
- I.T.G.E. (1973a).- Estudio económico y tecnológico para explotación y aprovechamiento de las Rocas Industriales. Especificaciones de las Rocas Industriales. Tomo II. Arenas y Gravas.
- I.T.G.E. (1973b).- Inventario Nacional de Balsas y Escombreras. Región Andaluza.
- I.T.G.E. (1973c).- Mapa Metalogenético de España E. 1:200.000, Hoja $n\Omega$ 74 (Puebla de Guzmán). Serv. Pub. Min. Ind. Madrid.
- I.T.G.E. (1973d).- Mapa Metalogenético de España E. 1:200.000, Hoja, nº 75 (Sevilla). Serv. Pub. Min. Ind. Madrid.
- I.T.G.E. (1974a). Estudio económico y tecnológico para explotación y aprovechamiento de las Rocas Industriales. Especificaciones y clasificación de las Rocas Industriales. Tomo IV: Rocas calcáreas sedimentarias. Tomo VII: Aridos de machaqueo.

- I.T.G.E. (1974b).- Mapa de Rocas Industriales E. 1:200.000, Hojas y Memoria de Puebla de Guzmán y Sevilla (74 y 75). Serv. Pub. Min. Ind. Madrid.
- I.T.G.E. (1974c).- Mapa Geológico de España E. 1:50.000, Hoja 919 (Almadén de la Plata). Serv. Pub. Min. Madrid.
- I.T.G.E. (1975a). Estudio económico y tecnológico para explotación y aprovechamiento de las Rocas Industriales. Especificación y clasificación de las Rocas Industriales. Tomo X: Arcillas.
- I.T.G.E. (1975b).- Mapa Geológico de España E. 1:50.000, Hoja 940 (Castilblanco de los Arroyos). Serv. Pub. Min. Ind. Madrid.
- I.T.G.E. (1975c). Mapa Geológico de España E. 1:50.000, Hoja 984 (Sevilla). Serv. Pub. Min. Ind. Madrid.
- I.T.G.E. (1976d).- Mapa Geológico de España E. 1:50.000, Hoja 962 (Alcalá del Río). Serv. Pub. Min. Ind. Madrid.
- I.T.G.E. (1976e).- Mapa Geológico de España E. 1:50.000, Hoja 983 (Sanlúcar la Mayor). Serv. Pub. Min. Ind. Madrid.
- I.T.G.E. (1978a).- Fase previa de exploración de asbestos en zonas de los Pirineos, Badajoz, Sevilla y Huelva.
- I.T.G.E. (1978b).- Localización y Estudio Tecnológico de Pizarras en Huelva.
- I.T.G.E. (1978c). Mapa Geológico de España E. 1:50.000, Hoja 961 (Aznalcollar). Serv. Pub. Min. Ind. Madrid.
- I.T.G.E. (1978d).- Mapa Geológico de España E. 1:50.000, Hoja 939
 (El Castillo de las Guardas). Serv. Pub. Min. Ind. Madrid.
- I.T.G.E. (1979).- Mapa Geológico de España E. 1:50.000, Hoja 936 (Paymogo). Serv. Pub. Min. Ind. Madrid.
- I.T.G.E. (1980).- Investigación de Mármoles y Calizas para uso como roca ornamental en Córdoba y Sevilla.
- I.T.G.E. (1981a).- Análisis Preliminar de las posibilidades de las Baritas en Andalucía.
- I.T.G.E. (1981b). Reconocimiento del potencial de diatomitas y albero de las provincias de Sevilla y Cádiz.
- I.T.G.E. (1982a).- Mapa Geológico de España E. 1:50.000, Hoja 938 (Nerva). Serv. Publ. Min. Ind. Madrid.
- I.T.G.E. (1982b).- Mapa Geológico de España E. 1:50.000, Hoja 958 (Puebla de Guzmán). Serv. Pub. Min. Ind. Madrid.

- I.T.G.E. (1982c).- Mapa Geológico de España E. 1:50.000, Hoja 980 (San Silvestre de Guzmán). Sev. Pub. Min. Ind. Madrid.
- I.T.G.E. (1982d).- Mapa Geológico de España E. 1:50.000, Hoja 960 (Valverde del Camino). Serv. Pub. Min. Ind. Madrid.
- I.T.G.E. (1982e).- Estudio de las posibilidades de utilización
- del óxido de Manganeso contenido en las Pizarras de Huelva como colorante cerámico.
- I.T.G.E. (1982f).- Prospección de Granitos Ornamentales en las provincias de Córdoba, Huelva, Jaén y Sevilla.
- I.T.G.E. (1982g).- Investigación Geológica y Tecnológica de Arcillas en Andalucía.
- I.T.G.E. (1982h).- Síntesis Geológica de la Faja Pirítica del Suroeste de España. Serv. Pub. Min. Ind. Madrid.
- I.T.G.E. (1983a). Mapa Geológico de España E. 1:50.000, Hoja 916 (Aroche). Serv. Pub. Min. Ind. Madrid.
- I.T.G.E. (1983b).- Mapa Geológico de España E. 1:50.000, Hoja 982 (La Palma del Condado). Serv. Pub. Min. Ind. Madrid.
- I.T.G.E. (1983c).- Mapa Geológico de España E. 1:50.000, Hoja 915(El Rosal de la Frontera). Serv. Pub. Min. Ind. Madrid.
- I.T.G.E. (1984a). Investigación de Rocas Puzzolánicas en España.
- I.T.G.E. (1984b).- Mapa Geológico de España E. 1:50.000, Hoja 917 (Aracena). Serv. Pub. Min. Ind. Madrid.
- I.T.G.E. (1984c). Mapa Geológico de España E. 1:50.000, Hoja 937(El Cerro de Andévalo). Serv. Pub. Min. Ind. Madrid.
- I.T.G.E. (1985a).- Inventario Nacional de Balsas y Escombreras. Sevilla.
- I.T.G.E. (1985b).- Inventario Nacional de Balsas y Escombreras. Huelva y Badajoz. Memoria y Fichas.
- I.T.G.E. (1985c).- Investigación de granates para usos industriales en España.
- I.T.G.E. (1985d).- Mármoles Españoles.
- I.T.G.E. (1986a).- Mapaa Geológico de España E. 1:50.000, Hoja
- 918 (Santa Olalla del Cala). En lit. Serv. Publ. Min. Ind. Madrid.
- I.T.G.E. (1986b).- Pizarras en España.
- I.T.G.E. (1986c).- Granitos de España.
- I.T.G.E. (1989).- Mapa Geológico de España E. 1:50.000, Hoja 959 (Calañas). Serv. Pub. Min. Ind. Madrid.

- I.T.G.E. (1990a). Estudio para el aprovechamiento industrial de las arcillas del Neógeno de la Depresión del Guadalquivir. Serv. Pub. Min. In. Madrid.
- I.T.G.E. (1990b).- Granitos de España.
- JUNTA DE ANDALUCIA (1986).- Libro Blanco de la Minería Andaluza.

 Conserjería de Economía y Fomento Direcciçon General de

 Industria, Energía y Minas.
- JUNTA DE ANDALUCIA (1988a).- Plan Especial de Protección del Medio Físico y Catálogo de la provincia de Huelva.

 Consejería de Obras Públicas y Transportes. Direcciçon General de Urbanismo.
- JUNTA DE ANDALUCIA (1988b).- Plan Especial de Protección del Medio Físico y Catálogo de la provincia de Sevilla.

 Consejería de Obras Públicas y Transportes. Dirección General de Urbanismo.
- JUNTA DE ANDALUCIA (1988c).- Panorama Minero de Andalucía.

 Consejería de Fomento e Industria.
- KUZVART, M. (1984).- Industrial minerals and rocks. Developments in economic geology, 18. Elsevier. Checoslovaquia. 454 pp.
- LEFOND, S.J. (Edit.) (1983).- Industrial minerals and rocks.

 Society of Mining Engineers. AIME. New York, 2 vol, 1446

 pp.
- MINER. Estadística Minera de España 1988-1990.
- SIMANCAS, F. (1984).- Geología de la extremidad oriental de la zona Sud-Portuguesa. Tesis Doct. Univ. Granada, 447 pp.
- VIGUIER, C. (1974).- Le Néogéne de L'Andalousie Nord-occidentale (Espagne). Histoire geologique du bassin du bas Guadalquivir. Thése Bourdeaux, 449 pp.

ANEXO I LISTADO DE EXPLOTACIONES E INDICIOS

NUM.	SUSTANCIA	ALOH	COORE	ENADAS	PROV.	TERMINO	ESTADO	USC	UND.
		·	×	У					
1	CALIZA	915	654,85	4.203,65	н	R.de la Frontera	EB	04	22a
2	CALIZA	915	658,25	4.204,65	Н	R.de la Frontera	EB	04	22a
3	ARENA	916	664,45	4.235,15	Н	R.de la Frontera	EI	03	37
4	GRANITO	916	673,30	4.205,50	Н	Aroche	EB	02	7
5	GRANITO	916	672,95	4.202,60	Н	Aroche	EB	02	7
6	MARMOL	916	668,70	4.203,20	H	Aroche	EB	01	22a
7	MARMOL	916	678,35	4.202,00	Н	Aroche	EB	01	22a
8	MARMOL	916	679,75	4.200,17	H	Aroche	EA	01	22a
9	WOLLASTONITA	916	680,70	4.199,30	Н	Aroche	IN	_	22a
10	GRANITO	916	670,30	4.198,65	Н	Aroche	EB	02	16
11	GRANITO	916	670,00	4.197,65	Н	Aroche	EB	02	6
12	PIZARRAS	916	687,20	4.206,70	Н	Aroche	IN	-	19
13	WOLLASTONITA	916	675,20	4.206,90	Н	Aroche	IN	-	5a
14	WOLLASTONITA	916	674,85	4.200,85	Н	Aroche	IN	_	22a
15	WOLLASTONITA	916	674,20	4.201,10	Н	Aroche	IN	-	22a
16	WOLLASTONITA	916	670,40	4.102,85	Н	Aroche	IN	-	22a
17	WOLLASTONITA	916	671,25	4.202,40	H	Aroche	IN	-	22a
18	WOLLASTONITA	916	671,40	4.202,00	Н	Aroche	IN	-	22a
19	WOLLASTONITA	916	671,50	4.201,80	Н	Aroche	IN	-	22a
20	WOLLASTONITA	916	671,65	4.201,75	Н	Aroche	IN	-	22a
21	MARMOL	917	705,35	4.199,55	Н	Fuenteheridos	EA	01	22b
22	MARMOL	917	705,10	4.199,10	Н	Galaroza	EI	01	22b
23	MARMOL	917	705,10	4.199,05	Н	Fuenteheridos	EA	01	22b
24	MARMOL	917	705,25	4.199,80	Н	Fuenteheridos	EA	01	22b
25	MARMOL	917	709,90	4.198,60	Н	Fuenteheridos	EB	02	21
26	CALIZA	917	708,85	4.197,30	Н	Los Marines	EA	04	21b
27	CALIZA	917	713,10	4.197,50	Н	Aracena	EA	04	21b
28	GRAFITO	917	691,85	4.196,65	Н	Almonaster	EB	10	23a
29	CALIZA	917	698,95	4.194,60	Н	Sta. Ana La Real	EB	04	21
30	CALIZA	917	700,60	4.193,05	Н	Sta. Ana La Real	EB	04	22 a
31	GRAFITO	917	696,30	4.194,10	Н	Aracena	IN	-	23a
32	GRANITO	917	696,85	4.191,10	Н	Escalada	EB	02	6
33	GRANITO	917	690,05	4.191,70	Н	Almonaster	EB	02	5a
34	GRANITO	917	696,15	4.191,20	Н	- Almonaster	EI	02	6

NUM.	SUSTANCIA	HOJA	COORD	ENADAS	PROV.	TERMINO E	STADO	USO	UND.
·			×	У					
35	PIZARRAS	917	692,15	4.204,00	н	Cortegana	IN	_	20
36	PIZARRAS	917	703,50	4.202,00	Н	Valdelarco	IN	-	20
37	GRAFITO	917	698,80	4.194,50	Н	Sta. Ana La Real	IN	-	22
38	GRAFITO	917	698,80	4.194,40	Н	Sta. Ana La Real	IN	-	22
39	GRAFITO	917	698,75	4.193,40	Н	Sta. Ana La Real	IN	-	22
40	MARMOL	917	715,30	4.196,20	H	Aracena	IN	-	22
41	LAVAS	917	692,90	4.196,80	H	Cortegana	IN	-	22
42	CALIZA	918	732,75	4.205,35	Н	Cala	EB	04	11
43	CALIZA	918	731,30	4.204,40	Н	Cala	EB	04	11
44	CALIZA	918	721,65	4.195,65	Н	Puerto Moral	€B	04	21
45	GRANITO	918	745,55	4.203,10	Н	St.Olalla del Cala	EA	01	4
46	GRANITO	918	745,65	4.200,80	Н	St.Olalla del Cala	EA	01	4
47	GRANITO	918	747,10	4.201,50	Н	St.Olalla del Cala	EA	01	4
48	CALIZA	919	761,75	4.196,60	SE	Almadén Plata	EB	04	22a
49	CALIZA	919	757,90	4.196,85	SE	Almadén Plata	ΕB	04	22a
50	CALIZA	919	757,20	4.196,75	SE	Almadén Plata	EB	04	22a
51	CALIZA	919	757,40	4.196,70	SE	Almadén Plata	EB	04	22a
52	CALIZA	919	756,70	4.197,70	SE	Almadén Plata	EB	04	22a
53	CALIZA	919	756,50	4.197,00	SE	Almadén Plata	EB	04	22a
54	CALIZA	919	757,90	4.196,95	SE	Almadén Plata	. EB	04	22a
55	CALIZA	919	759,45	4.197,40	SE	Almadén Plata	EB	04	22a
56	GRANITO	919	760,60	4.194,00	SE	Almadén Plata	ΕB	01	6
57	PIZARRA	936	650,50	4.179,85	Н	Paymogo	EB	02	29
58	DIABASA	937	674,40	4.181,80	Н	El Cerro Andevalo	IN	_	28
59	DIABASA	937	667,550	4.177,35	Н	Cabezas Rubias	EB	04	28
60	GRAVA	938	716,40	4.186,80	Н	Aracena	EI	03	37
61	CUARZO	938	699,85	4.178,50	Н	Almonaster	IN	-	2
62	CUARZO	938	699,55	4.178,20	Н	Almonaster	EB	11	2
63	PORFIDO	938	715,35	4.174,15	Н	Nerva	EB	04	28
64	DIABASA	938	717,80	4.174,40	Н	Nerva	EA	04	26
65	CAOLIN	938	706,55	4.174,85	Н	El Campillo	EB	11	25
66	OCRES	938	694,80	4.184,00	Н	Almonaster	IN	-	28
67	OCRES	938	702,90	4.103,40	Н	Almonaster	IN	-	28
68	ESCORIA	938	715,10	4.173,20	Н	Minas de Riotinto	EI	04	26

NUM.	SUSTANCIA	HOJA	COORD	ENADAS	PROV.	TERMINO	ESTADO	USO	UND.
)	× γ	/				
69	PIROCLASTOS	938	713,30	4.174,90	Н	Minas de Riotinto	IN	-	29
70	PIROCLASTOS	938	689,85	4.175,85	Н	Almonaster	IN	-	28
71	PIROCLASTOS	938	710,90	4.176,50	H	Minas de Riotinto	IN	-	28
72	LAVAS	938	712,25	4.181,70	H	Campofrio	IN	_	25
73	LAVAS	938	708,00	4.175,60	Н	Campofrio	IN	-	28
74	LAVAS	938	706,10	4.176,00	Н	Campillo	IN	-	26
75	RIOLITAS	939	739,10	4.185,95	H	Zufre	EB	04	27
76	FLUORITA	939	731,25	4.178,85	SE	Castillo	EB	12	5
77	ARENA	940	752,35	4.185,75	SE	Almadén Plata	EI	03	4
78	GRANITO	940	751,35	4.184,95	SE	El Ronquillo	EB	02	4
79	GRANITO	940	752,25	4.182,25	SE	El Ronquillo	IN	-	4
80	GRANITO	940	749,75	4.182,50	SE	El Ronquillo	EI	02	4
81	GRANITO	940	763,25	4.176,70	SE	Castillblanco	EB	02	6
82	GRANITO	940	761,55	4.191,05	SE	Almadén Plata	EB	02	6
83	GRANITO	940	763,45	4.190,73	SE	Almadén Plata	EB	02	6
84	RIOLITA	958	657,25	4.166,75	н	Puebla de Guzmán	EB	02	28
85	ARCILLA	958	653,75	4.165,95	Н	Puebla de Guzmán	EB	09	29
86	T. VOLCANICA	958	633,25	4.159,65	Н	El Granado	EΒ	04	3
87	T. VOLCANICA	958	632,25	4.159,85	Н	El Granado	EB	01	3
88	DIABASA	958	633,85	4.159,60	н	El Granado	ĒВ	01	3
89	PIROCLASTOS	959	667,20	4.163,50	н	Tharsis	IN	-	28
90	OCRES	959	686,20	4.169,40	н	Villanueva Cruces	IN	-	28
91	PIZARRA	959	680,75	4.162,00	Н	Sotiel Coronada	IN	-	29
92	PIZARRA	960	690,10	4.163,25	Н	Calañas	IN	01	28
93	PIZARRA	960	690,10	4.162,90	Н	Calañas	EI	-	25
94	GRAVA	960	703,00	4.155,40	н	Valverde Camino	EA	03	32
95	ARENA	960	704,20	4.155,15	Н	Valverde Camino	EI	05	32
96	DIABASA	960	698,65	4.153,90	Н	Valverde Camino	EA	04	28
97	OCRES	960	705,10	4.168,05	Н	Zalamea	IN	_	28
98	GRANITO	961	747,30	4.169,00	SE	El Garrobo	IN	_	5
99	CUARZO	961	746,20	4.168,30	SE	El Garrobo	EΒ	11	2
100	CUARZO	961	746,25	4.167,20	SE	El Garrobo	EB	11	2
101	ARENA	961	740,90	4.156,10	SE	Aznalcóllar	EI	03	32
102	RIOLITA	961	740,15	4.156,10	SE	Aznalcóllar	EB	04	28

NUM.	SUSTANCIA	ALOH	COORD	ENADAS	PROV.	TERMINO	ESTADO	USO	UNI
			>	с у					
03	ZAHORRA	961	738,95	4.154,50	SE	Aznalcóllar	EI	03	37
04	ZAHORRA	961	739,10	4.154,35	SE	Aznalcóllar	EB	03	37
05	PIZARRA	961	740,65	4.156,40	SE	Aznalcóllar	EI	02	28
06	CALIZA	961	744,30	4.154,50	SE	Aznalcóllar	IN	-	32
07	PIROCLASTOS	961	744,45	4.155,70	SE	Aznalcóllar	IN	-	28
80	GRANITO	962	764,75	4.167,15	SE	Castillblanco	EA	04	5
09	ARCILLA	962	237,70	4.162,30	SE	Burguillos	IN	-	33
10	GRAVA	962	238,55	4.157,40	SE	Alcalá del Río	EB	03	37
11	ARCILLA	962	237,60	4.157,40	SE	Alcalá del Río	EB	09	33
12	ARCILLA	962	237,80	4.157,35	SE	Alcalá del Río	EB	09	33
13	ARCILLA	962	760,05	4.160,35	SE	Guillena	EA	09	33
14	GRANITO	962	758,80	4.159,90	SE	Guillena	EA	04	6
15	GRAVA+ARENA	962	761,65	4.158,00	SE	Guillena	EA	03	37
16	GRAVA+ARENA	962	761,40	4.156,45	SE	Guillena	EA	03	37
17	GRAVA+ARENA	962	762,05	4.154,85	SE	Guillena	EA	03	37
18	GRAVA+ARENA	962	237,50	4.156,80	SE	Alcalá del Río	EA	03	37
19	GRAVA+ARENA	962	237,40	4.156,80	SE	Alcalá del Río	EA	03	37
20	GRAVA+ARENA	962	236,85	4.155,35	SE	Alcalá del Río	EA	03	37
21	GRANITO	962	751,75	4.159,25	SE	Gerena	EB	02	6
22	GRANITO	962	752,50	4.159,10	SE	Gerena	EB	02	6
23	GRANITO	962	751,90	4.157,90	SE	Gerena	EA	02	6
24	GRANITO	962	753,20	4.159,30	SE	Gerena	EA	04	6
25	GRANITO	962	752,15	4.138,25	SE	Gerena	EB	02	6
26	GRANITO	962	762,50	4.169,00	SE	Castillblanco	IN	-	5
27	ARS.SILICEAS	981	661,70	4.146,70	н	Villa.Castillejos	IN	-	34
28	ARENAS	981	662,55	4.142,95	н	Villa.Castillejos	EB	03	36
29	ARENA	981	671,95	4.143,40	Н	Gibraleón	EA	03	36
30	ARENA	981	672,95	4.143,70	Н	Gibraleón	EA	03	36
31	ARENA	981	673,10	4.143,15	H	Gibraleón	EA	03	36
32	ARENA	981	671,15	4.143,90	Н	San Bartolomé	EB	03	34
33	GRAUWACA	981	677,40	4.140,60	Н	Gibraleón	EB	04	29
34	GRAUWACA	981	680,80	4.141,70	Н	Gibraleón	EA	04	29
35	GRAUWACA	981	679,95	4.140,95	H	Gibraleón	EB	04	29
36	GRAUWACA	981	679,70	4.140,95	н	Gibraleón	EB	04	29

NUM.	SUSTANCIA	HOJA	COORD	ENADAS	PROV.	TERMINO	ESTADO	USO	UND.
			,	у у					
137	ARENAS	981	680,20	4.140,40	н	Gibraleón	EB	03	35
138	ARENA	981	666,70	4.143,70	Н	Gibraleón	EI	03	36
139	ARCILLA	981	681,25	4.138,70	Н	Gibraleón	EA	09	33
140	ARS.SILICEAS	981	664,10	4.136,50	Н	Cartaya	IN	-	36
141	ARENAS	981	681,00	4.138,50	Н	Gibraleón	EB	03	37
142	GRAUWACA	981	664,15	4.137,75	Н	Cartaya	EI	04	29
143	GRAUWACA	981	664,05	4.138,00	Н	Cartaya	EB	04	29
144	GRAVA	981	681,50	4.136,60	Н	Gibraleón	EB	03	37
145	ARCILLA	981	689,20	4.139,30	Н	S.Juan del Puerto	EI	09	33
146	ARCILLA	982	706,60	4.137,55	н	Niebla	EB	09	33
147	ARCILLA	982	717,60	4.139,70	Н	La Palma	EB	09	33
148	ARCILLA	982	706,70	4.137,85	н	Niebla	EB	09	33
149	ARCILLA	982	717,80	4.139,65	Н	La Palma	EB	09	33
150	ARCILLA	982	694,70	4.143,90	Н	Beas	EI	09	33
151	ARCILLA	982	694,70	4.143,80	Н	Beas	EΒ	09	33
152	ARCILLA	982	694,60	4.143,75	Н	Beas	EB	09	33
153	ARCILLA	982	706,95	4.135,90	Н	Niebla	EI	06	35
154	ARCILLA	982	708,20	4.135,90	н	Niebla	EB	09	35
155	ARCILLA	982	707,35	4.135,95	н	Niebla	EB	06	35
156	ARCILLA	982	690,50	4.139,40	н	Trigueros	EA	09	36
157	ARCILLA	982	716,60	4.139,60	н	La Palma	EB	09	33
158	ARCILLA	982	690,45	4.141,30	н	Trigueros	EB	09	33
159	ARCILLA	982	690,70	4.141,00	Н	Trigueros	EB	09	33
160	CALIZA	982	705,40	4.135,75	Н	Bonares	EA	04	29
161	ZAHORRA	982	702,40	4.134,60	н	Niebla	EI	03	37
162	ZAHORRA	982	702,40	4.134,80	н	Niebla	ΕI	03	37
163	ZAHORRA	982	702,25	4.135,15	н	Niebla	EB	03	37
164	ZAHORRA	982	702,40	4.135,30	Н	Niebla	EB	03	37
165	ZAHORRA	982	702,60	4.135,80	Н	Niebla	EB	03	37
166	ZAHORRA	982	702,80	4.136,05	Н	Niebla	EB	03	37
167	ZAHORRA	982	703,35	4.136,35	Н	Niebla	EI	03	37
168	GRAVA	982	690,90	4.143,55	Н	Trigueros	EI	03	37
169	GRAVA	982	690,90	4.142,45	Н	Trigueros	EI	03	37
170	ARENA	982	693,50	4.150,60	н	Trigileros	EB	03	37

NUM.	SUSTANCIA	ALOH	COORD	ENADAS	PROV.	TERMINO I	ESTADO	USO UI	ND.
			•	x y	1				
171	GRAVA	982	708,70	4.141,40	Н	Niebla	EI	03 3	7
172	RIOLITA	982	705,30	4.152,50	н	Niebla	EA	04 28	8
173	CALIZA	982	704,85	4.139,65	Н	Niebla	EA	06 3	2
174	ARENA	982	717,75	4.138,40	Н	La Palma	EB	03 3	7
175	ARCILLA	982	717,30	4.139,60	Н	Las Loberas	EA	09 3	3
176	ARCILLA	982	718,50	4.141,30	H	La Palma	EA	09 3	3
177	ARENA	982	693,10	4.150,30	н	Beas	EI	03 3	2
178	ARENA	982	690,35	4.152,25	Н	Beas	EI	03 3	7
179	ARENA	982	690,75	4.152,25	Н	Beas	EI	03 3	2
180	ARENA	982	690,85	4.152,10	Н	Beas	EI	03 3	2
181	ARENA	982	690,20	4.152,15	Η.	Beas	EI	03 3	2
182	ARCILLA	982	691,70	4.138,50	Н	Trigueros	EA	09 3	3
183	ARENA	982	690,35	4.152,30	Н	Trigueros	EA	09 3	7
184	CALIZA	983	725,65	4.148,80	Н	Paterna del Campo	EI	03 3	2
185	GRAVA	983	746,25	4.144,65	SE	San Lucar La Mayo	r EA	03 3	7
186	GRAVA	983	745,50	4.143,50	SE	San Lucar La Mayo	r EA	03 3	7
187	GRAVA	983	745,40	4.142,85	SE	San Lucar La Mayo	r EI	03 3	7
188	ARCILLA	983	736,90	4.141,20	SE	Castilleja del C.	EA	09 3	3
189	ARCILLA	983	747,00	4.138,40	SE	Benacazón	EA	09 3	5
190	ARCILLA	983	736,10	4.141,60	SE	Castilleja del C.	EA	09 3	3
191	ARCILLA	983	728,20	4.141,50	н	Manzanilla	EA	09 3	3
192	ARCILLA	983	735,55	4.141,25	SE	Castilleja del C.	EA	09 3	3
193	ARCILLA	983	747,35	4.140,55	SE	San Lucar	EA	09 3	5
194	ARCILLA	983	747,10	4.140,40	SE	Castilleja del C.	EI	09 3	15
195	ARCILLA	983	747,55	4.140,50	SE	San Lucar	EB	09 3	15
196	ARCILLA	983	747,30	4.140,70	SE	San Lucar	EB	09 3	15
197	ARCILLA	984	759,30	4.152,90	SE	Salteras	EA	09 3	13
198	GRAVA+ARENA	984	243,90	4.150,40	SE	S.José Rinconada	EA	3.4	37
199	GRAVA+ARENA	984	240,40	4.151,15	SE	S.José Rinconada	EB	3.4	37
200	GRAVA+ARENA	984	239,85	4.150,80	SE	S.José Rinconada	EA	3.4	37
201	GRAVA+ARENA	984	240,25	4.150,60	SE	S.José Rinconada	EA	3.4	37
202	GRAVA+ARENA	984	238,75	4.150,35	SE	S.José Rinconada	EA	3.4	37
203	GRAVA+ARENA	984	238,30	4.149,70	SE	S.José Rinconada	EA	3.4	37
204	GRAVA+ARENA	984	243,60	4.149,20	SE	S.José Rinconada	EB	3.4	37

NUM.	SUSTANCIA	HOJA	COORD	ENADAS	PROV.	TERMINO	ESTADO	USO I	UND
			,	у у					
205	GRAVA+ARENA	984	243,85	4.147,50	SE	S.José Rinconada	EA	3.4	37
206	GRAVA+ARENA	984	245,90	4.147,55	SE	S.José Rinconada	EA	3.4	36
207	ARCILLA	984	755,15	4.145,30	SE	Salteras	EB	09	32
208	GRAVA+ARENA	984	242,45	4.144,70	SE	Sevilla	EB	3.4	37
209	ARCILLA	984	762,20	4.143,80	SE	Camas	EA	09	35
10	ARCILLA	984	763,60	4.142,15	SE	Sevilla	EB	09	33
211	ARCILLA	984	763,70	4.140,80	SE	St.J.Aznalfarache	EA	09	33
212	ARCILLA	984	763,25	4.140,80	SE	St.J.Aznalfarache	EB	09	34
213	ARCILLA	984	762,95	4.140,60	SE	St.J.Aznalfarache	EB	09	35
214	ARCILLA	984	763,70	4.141,40	SE	St.J.Aznalfarache	EA	09	33
215	ARCILLA	984	763,30	4.141,50	SE	Camas	EB	09	33
216	GRAVA+ARENA	984	241,90	4.138,50	SE	Alcalá de Guadair	a EA	3.4	3
17	GRAVA+ARENA	984	242,50	4.138,60	SE	Alcalá de Guadair	a EA	3.4	3
18	ALBERO	984	247,20	4.138,20	SE	Alcalá de Guadair	a EA	03	3
19	ALBERO	984	247,20	4.137,70	SE	Alcalá de Guadair	a EA	03	3
20	ALBERO	984	247,20	4.136,55	SE	Alcalá de Guadair	a EB	03	3
21	GRAVA	984	236,00	4.147,55	SE	S.José Rinconada	EA	3.4	3
22	GRAVA+ARENA	984	240,90	4.152,20	SE	S.José Rinconada	EA	3.4	3
23	ALBERO	984	246,90	4.136,60	SE	Alcalá de Guadair	a EA	03	3
24	GRAFITO	916	675,10	4.206,80	Н	Aroche	IN	-	1
225	GRAFITO	916	677,10	4.200,10	Н	Aroche	IN	-	2
26	GRAFITO	916	676,85	4.202,85	Н	Aroche	EB	-	2
227	GRAFITO	916	677,65	4.202,35	Н	Aroche	ΕB	-	2
228	GRAFITO	916	678,95	4.201,90	Н	Aroche	IN	-	2
29	GRAFITO	916	679,30	4.201,10	н	Aroche	IN	-	2
230	GRAFITO	916	680,00	4.201,10	Н	Aroche	IN	-	2
231	GRAFITO	916	680,10	4.201,40	Н	Aroche	IN	-	2
32	GRAFITO	916	680,15	4.200,20	Н	Aroche	IN	-	2
33	GRAFITO	916	680,10	4.206,10	Н	Aroche	IN	-	1
234	GRAFITO	916	686,50	4.200,55	Н	Aroche	IN	-	10
235	GRAFITO	917	689,10	4.196,10	Н	Cortegana	IN	_	23
236	GRAFITO	917	700,40	4.193,80	Н	Santa Ana la Real	IN	-	2
237	GRAFITO	917	707,50	4.200,20	Н	Cortegana	IN	-	2
238	GRAFITO	917	695,50	4.194,00	н	Almonaster	EB	-	2

ANEXO II LISTADO DE EXPLOTACIONES E INDICIOS NO INVENTARIADOS

N°		COORDI	ENADAS			
TAMPO	SUST.	X	Y	HOJA	TERMINO	MOTIVOS
1	GRAVA	662,20	4.205,10	916	R.Frontera	Prohibida la extracción
9	GRANITO	678,80	4.199,60	916	Aroche	Escaso interés
1	GRAVA	697,85	4.207,40	917	La Nava	Falta de interés
7	PIZARRA	699,65	4.198,10	917	Jabugo	Tamaño reducido
14	GRAFITO	695,50	4.194,50	917	Cortegana	No localizado
15	GRANITO	696,85	4.192,80	917	Almonaster	Escaso interés
19	ARENA	699,30	4.192,20	917	S.Ana Real	Desaparecido por obras
6	CALIZA	757,90	4.119,75	919	Almadén Plata	Basurero
10	CALIZA	760,10	4.197,30	919	Almadén Plata	Basurero
2	GRAVA	651,50	4.173,60	936	Paymogo	Escaso interés
3	GRAVA	651,40	4.180,80	936	Paymogo	Reducido tamaño
1	RIOLITA	679,45	4.185,30	937	Cortegana	Escaso interés
2	RIOLITA	679,45	4.185,30	937	Cortegana	Carretera
5	PIZARRA	679,75	4.173,75	937	Calañas	Está en la vía del tre
6	RIOLITA	683,90	4.171,40	937	Calañas	Está en la carretera
7	PIZARRA	683,75	4.171,55	937	Calañas	Reducido tamaño
8	PIZARRA	683,70	4.171,90	937	Calañas	Escaso interés
1	GRANITO	713,90	4.190,10	938	Aracena	No localizado
2	CUARZO	714,30	4.190,25	938	Aracena	No localizado .
4	GRANITO	716,40	4.188,05	938	Aracena	No localizado
5	GRAVA	698,35	4.187,75	938	Almonaster	Repoblado
6	GRAVA	698,25	4.186,70	938	Almonaster	Repoblado
7	RIOLITA	698,60	4.189,55	938	Almonaster	Está en la carretera
8	GRAVA	699,35	4.187,40	938	Almonaster	Está en la carretera
9	PIZARRA	712,65	4.181,75	938	Nerva	Escaso interés
10	DIABASA	713,05	4.179,70	938	Nerva	Pantano
11	DIABASA	712,65	4.180,10	938	Nerva	Está en la carretera
13	GRAVA	702,30	4.178,30	938	El Campillo	Agotado el recurso
15	GRAFITO	706,95	4.172,70	938	Zalamea	Escaso interés
17	PIZARRA	707,10	4.174,00	938	Zalamea	Casco urbano
19	DIABASA	717,80	4.174,50	938	Nerva	Tapada
20	DIABASA	700,65	4.173,80	938	Zalamea	Tamaño reducido
24	OCRES	714,50	4.173,35	938	M.Riotinto	No aprovechable
1	GRAVA	738,60	4.187,40	939	Zufre	Pantano

•

No		COORD	ENADAS			
CAMPO	SUS .	X	Y	ALOH	TERMINO	MOTIVOS
3	PIZARRA	727,50	4.173,30	939	El Madroño	Tamaño reducido
4	GRANITO	749,70	4.179,20	940	El Ronquillo	Tapado por obra
1	GRAUWACA	639,25	4.153,00	958	El Granado	Falta de interés
2	GRAUWACA	647,85	4.152,25	958	El Granado	Reducido tamaño
5	PIZARRA	654,15	4.165,15	958	P.de Guzmán	Escaso interés
1	RIOLITA	684,95	4.170,55	959	Calañas	Pegado a la carretera
2	RIOLITA	688,25	4.168,30	959	Calañas	Tapado por construcció
3	RIOLITA	674,50	4.165,95	959	Villa. de C.	Tamaño reducido
4	RIOLITA	664,90	4.163,90	959	Tharsis	Nulo interés
5	RIOLITA	665,10	4.165,35	959	Alosno	Escasas reservas
6	PIZARRA	689,55	4.165,50	959	Calañas	Pegado a la carretera
7	PIZARRA	688,25	4.163,95	959	Calañas	Metálicos
8	RIOLITA	663,35	4.160,25	959	Alosno	Repoblado
1	DIABASA	714,45	4.166,70	960	Zalamea	Nulo interés
2	PIZARRA	698,40	4.162,00	960	V. del Camino	Pegado a la carretera
3	RIOLITA	690,45	4.163,15	960	Calañas	Reducido tamañó
6	ARENA	704,95	4.154,35	960	V. del Camino	Cubierto
10	ARENA	702,85	4.153,65	960	Niebla	Repoblado
4	PIZARRA	729,95	4.167,70	961	EL Madroño	Interés nulo
9	ZAHORRA	739,50	4.154,75	961	Aznalcollar	Pegado a la carretera
10	CALIZA	740,45	4.155,90	961	Aznalcollar	Basurero
12	ARCILLA	739,45	4.155,15	961	Aznalcollar	Cubierto
2	DIABASA	237,90	4.163,10	962	Burguillos	Casco urbano
3	ZAHORRA	238,45	4.164,00	962	Burguillo	Cultivos
6	ARCILLA	238,70	4.157,70	962	Alcalá del Río	Escaso interés
11	GRAVA	236,25	4.155,65	962	Alcalá del Río	Extracción prohibida
12	GRAVA	236,45	4.155,65	962	Alcalá del Río	No existe
13	GRAVA	235,85	4.155,40	962	Alcalá del Río	Extracción prohibida
14	GRAVA	761,70	4.157,05	962	Gillena	Cultivos
15	GRAVA	761,70	4.156,75	962	Gillena	Cultivos
16	GRAVA	761,55	4.156,45	962	Gillena	Inundada
17	GRAVA	761,30	4.155,40	962	Gillena	Cultivos
24	GRA+ARE	245,40	4.155,65	962	Brenes	Cultivos
25	GRANITO	750,35	4.157,05	962	Gerena	Escombros

N ^o		COORD	ENADAS			
CAMPO	SUST.	X	Y	HOJA	TERMINO	MOTIVOS
28	GRANITO	751,75	4.157,50	962	Gerena	Casco urbano
29	GRANITO	752,80	4.159,00	962	Gerena	Basurero
30	GRANITO	751,00	4.157,00	962	Gerena	Casco urbano
35	DIABASA	246,60	4.170,05	962	Castillblanco	Interás nulo
1	GRAUWACA	651,40	4.147,35	980	V.Castillejos	No localizada
3	GRAVA	666,10	4.145,85	981	S. Bartolomé	Repoblado
4	ARENA	661,75	4.141,60	981	V.Castillejos	Repoblado
14	GRAVA	680,25	4.139,65	981	Gibraleón	Casco urbano
25	ARENA	693,70	4.149,70	982	Beas	Repoblado
27	GRAVA	693,80	4.148,65	982	Beas	Interés nulo
28	PIZARRA	716,10	4.147,10	982	Palma Condado	Repoblado
29	PORFIDO	716,60	4.150,00	982	Paterna	Repoblado
30	DIABASA	706,10	4.152,40	982	Niebla	Interés nulo
31	ARCILLA	692,25	4.140,20	982	Trigueros	Basurero
32	ARCILLA	694,15	4.143,90	982	Beas	Basurero
33	ARCILLA	694,35	4.144,10	982	Beas	Basurero
34	ZAHORRA	705,65	4.136,85	982	Niebla	Basurero
35	GRAVA	706,10	4.137,20	982	Niebla	Desaparecido
36	GRAVA	705,40	4.137,05	982	Niebla	No existe
37	GRAVA	705,00	4.137,00	982	Niebla	No existe
41	ARCILLA	717,80	4.140,50	982	La Palma	Escombros
42	CALIZA	705,50	4.140,00	982	Niebla	Agotado
43	CALIZA	705,85	4.138,50	982	Niebla	Agotado
44	CALIZA	705,95	4.139,75	982	Niebla	Agotada
54	ARCILLA	690,80	4.139,80	982	Trigueros	Basurero
56	ARCILLA	695,55	4.141,60	982	Beas	Carece interés
57	ARENA	713,00	4.136,60	982	Bollullos	Carece de interés
1	GRAVA	747,90	4.152,20	983	Olivares	Cultivo
4	GRAVA	746,15	4.145,85	983	Sanlúcar Mayor	Regenerada
5	GRAVA	746,10	4.144,40	983	Sanlúcar Mayor	Escombros
6	GRAVA	745,65	4.143,80	983	Sanlúcar Mayor	Regenerada
9	ARCILLA	722,90	4.143,00	983	Villalba Alcor	Cultivos
10	ARCILLA	735,00	4.141,85	983	Castilleja Campo	Basurero
11	GRAVA	745,60	4.142,85	983	Sanlúcar Mayor	Repoblado

N ^o		COORDI	ENADAS			
CAMPO	SUST.	X	Y .	HOJA	TERMINO	MOTIVOS
13	ARCILLA	736,05	4.141,00	983	Castilleja Campo	Basurero
17	ARCILLA	736,40	4.141,30	983	Castilleja Campo	Agotada
22	ARCILLA	747,80	4.141,50	983	Sanlucar	Casco urbano
23	ARCILLA	744,90	4.138,00	983	Benacazón	Cultivos
25	ARENA	721,85	4.136,20	983	Bollullos	Cultivos
1	GRAV+ARE	762,60	4.154,00	984	La Algaraba	Agotada
3	GRAV+ARE	239,40	4.152,70	984	S.J.Rinconada	Agotada
4	GRAV+ARE	762,75	4.152,80	984	La Algaraba	Cultivos
5	GRAV+ARE	702,75	4.152,15	984	Gillena	Escaso interés
6	GRAV+ARE	238,15	4.151,90	984	S.J.Rinconada	Escombros
8	GRAV+ARE	762,20	4.151,20	984	S.J.Rinconada	Tapada
9	GRAV+ARE	760,50	4,148,9	984	Santiponce	Basurero
14	GRAV+ARE	240,70	4.150,70	984	S.J.Rinconada	Escaso interés
15	GRAV+ARE	240,40	4.150,51	984	S.J.Rinconada	Tapada
16	GRAV+ARE	240,20	4.150,40	984	S.J.Rinconada	Agotada
17	GRAV+ARE	239,90	4.150,16	984	S.J.Rinconada	Cultivos
18	GRAV+ARE	239,70	4.150,10	984	S.J.Rinconada	Cultivos
27	GRAV+ARE	764,60	4.143,00	984	Sevilla	Desaparecida
28	GRAV+ARE	764,45	4.142,00	984	Sevilla	Casco urbano
29	GRAV+ARE	764,55	4.141,90	984	Sevilla	Casco urbano
30	GRAV+ARE	764,10	4.141,55	984	Sevilla	Casco urbano
31	ARCILLA	763,10	4.141,80	984	Camas	Extracción prohibida
33	GRAV+ARE	764,45	4.141,55	984	Sevilla	Casco urbano
34	GRAV+ARE	764,10	4.141,30	984	Sevilla	Casco urbano
35	GRAV+ARE	763,75	4.139,40	984	Sevilla	Extracción prohibida
45	ALBERO	247,05	4.137,25	984	A.de Guadaira	Basurero
47	ALBERO	247,20	4.136,40	984	A.de Guadaira	Carretera
49	ALBERO	247,00	4.138,10	984	A.de Guadaira	Basurero
51	GRAVA	240,90	4.138,50	984	Sevilla	Cultivos

ANEXO III LISTADO DE EMPRESAS EXPLOTADORAS

PUNTO DE EXTRACCION	SUSTANCIA	EMPRESA Y DOMICILIO	TELEFONO	USO
5	MARMOL	RUFO FRANCO		01
6	MARMOL	LEVANTINA DE MARMOLES, S.A. C/ Estación, s/nQ NOVELDA (ALICANTE)		01
21	MARMOL	CANTERAS CERROBLANCO, S.A. LOS MARINES (HUELVA)		01
23	MARMOL	PRESUR C/ Claudio Coello, 20-12 MADRID		01
24	MARMOL	MIGUEL SANTOS LOSTA Avda. Carlos Cerril, 15 ARACENA (HUELVA)		01
26	CALIZA	GRAVISUM, S.A. C/ López Rubio, 3 ARACENA (HUELVA)		04
27	CALIZA	JOSE SANCHEZ BARBUDO Avda. Huelva, 16 ARACENA (HUELVA)	(955)11.00.06	04
29	CALIZA	CORVIAM, S.A. C/ Virgilio Zapatero, 7 SANTA ANA LA REAL (HUELVA)	•	04
34	GRANITO	FRANCISCO FERNANDEZ OCHOA ESCALADA (HUELVA)		02
45	GRANITO	ROCAS ORNAMENTALES DEL SUR C/ Residencial Mulhacén, 4 ZAFRA (BADAJOZ)	(924)35.36.61	01
46	GRANITO	EXTRACCIONES TOMIÑO, S.A. C/ Federico García Lorca, 8 SANTA OLALLA DEL CALA (HUELVA)	(955)19.01.73	01
47	GRANITO	MUGOSA, S.A. DON BENITO (BADAJOZ)		01
58	DIABASA	RIO TINTO ROCAS, S.L. Apartado de Correos, 48 21660 MINAS DE RIOTINTO (HUELVA)	(955)59.00.00 FAX 59.14.50	01

PUNTO DE EXTRACCION	SUSTANCIA	EMPRESA Y DOMICILIO	TELEFONO	USO
64	DIABASA	TORRES GALLARDO, S.A. C/ Sevilla, s/n NERVA (HUELVA)		04
77	ARENA	MANUEL FERNANDEZ Avda. de Andalucía, 112 EL RONQUILLO (HUELVA)		03
87	T.VOLCANICA	GRANITOS VERDETA, S.A. C/ Cumbres del Chanza EL GRANADO (HUELVA)		01
88	T.VOLCANICA	GRANITOS VERDETA, S.A. C/ Cumbres del Chanza EL GRANADO (HUELVA)		01
94	GRAVA	TRANSPORTES Y ARIDOS MACIAS, S. C/ Berrocal, 3 VALVERDE DEL CAMINO (HUELVA)	.A. (955)55.09.32	05
96	DIABASA	TRANSPORTES Y ARIDOS MACIAS, S. C/ Berrocal, 3 VALVERDE DEL CAMINO (HUELVA)	.A. (955)55.09.32	04
101	ARENA	AYUNTAMIENTO DE AZNALCOLLAR AZNALCOLLAR (SEVILLA)	•	05
108	GRANITO	FICOAN, S.A. C/ Peñalara, 1 SEVILLA	(954)563.10.61	04
113	ARCILLA	ANTONIO LOMBARDERO E HIJOS C/ Pasaje Listoneros, s/nΩ SEVILLA		09
114	GRANITO	GEVA, S.A. C/ Antioquía, 18 SEVILLA	(954)479.59.00	04
115	GRAVA+ARENA	SUMINITRAM, S.A. SEVILLA	(954)433.61.37	3.4
116	GRAVA+ARENA	ARIDOS MORENO, S.A. C/ Juan José Herrero, 7 LA ALGABA (SEVILLA)	(954)478.74.78	3.4
117	GRAVA+ARENA	ARIDOS BORBOLI Avda. Curzo Roja, 28 SEVILLA		3.4

PUNTO DE EXTRACCION	SUSTANCIA	EMPRESA Y DOMICILIO	TELEFONO	US
118	GRAVA+ARENA	HORMIGONES DEL SUR, S.A. Avda. Bonanza, 7 EVILLA	(954)502.60.60	3.4
119	GRAVA+ARENA	GRAVASUR, S.A. Avda. de Lorfa, s/nΩ SEVILLA	(954)478.00.00	3.4
120	GRAVA+ARENA	ARIDOS BORREGO CC-438 P.K. 12,5 SEVILLA		3.4
123	GRANITO	COOPERATIVA DE CANTERAS Avda. de José Antonio, 32 GERENA (SEVILLA)	(954)415.79.00	2
124	GRANITO	AUCON, S.A. C/ Alvarez Quintero, 7 SEVILLA	(954)421.56.86	03
125	GRANITO	MANUEL PUENTE GIL C/ Jardinillo, 4 GERENA (SEVILLA)		02
129	ARENA	MIGUEL MARTINEZ, S.A. GIBRALEON (HUELVA)		05
130	ARENA	HERMANOS LEAL C/ Alfonso El Sabio, 33 GIBRALEON (HUELVA)	(955)30.02.59	03
131	ARENA	MANUEL MORCILLO ALBA Queipo de Llano, 32 HUELVA	(955)24.88.94	03
132	ARENA	MIGUEL MARTINEZ LEAL Fernando El Santo, 33 GIBRALEON (HUELVA)		03
133	GRAUWACA	TRAGSA C/ San José, 35 HUELVA	(955)26.07.90	***************************************
134	GRAUWACA	RAFAEL MORALES, S.A. Avda. Francisco Montenegro, HUELVA	(955)24.58.15 s/nΩ FAX 26.13.12	04
139	ARCILLA	CERAMICAS GIBRALEON Ctra. Trigueros, s/nQ GIBRALEON (HUELVA)	(955)30.02.35	09

XTRACCION	SUSTANCIA	EMPRESA Y DOMICILIO	TELEFONO	USO
142	GRAUWACA	JESUS MAESTRE CIRARDE CARTAYA (HUELVA)		04
150	ARCILLA	JUAN CABALLERO LEÑERO Ctra. Valverde-Huelva, s/nΩ HUELVA		09
153	ARCILLA	CEMENTOS ASLAND, S.A. Ctra. Bonares, s/nΩ NIEBLA (HULEVA)	(955)36.30.31	06
155	ARCILLA	CEMENTOS ASLAND, S.A. Ctra. Bonares, s/nQ NIEBLA (HUELVA)	(955)36.30.31	06
160	CALIZA	HORMIGONES QUINTO CENTENARIO Ctra. de Palos, s/nΩ PALOS DE LA FRONTERA (HUELVA)		04
161	ZAHORRA	PROINSUR, S.A. C/ Vía Paisajística, s/nΩ HUELVA	(955)25.95.11	03
168	GRAVA	DIEGO MARIN, S.A. TRIGUEROS (HUELVA)		03
169	GRAVA	JUAN ROBLES CUADRI C/ La Orden, s/nΩ TRIGUEROS (HUELVA)	(955)30.53.37	03
172	RIOLITA	GALAN RUIZ, S.A. C/ Aracena, 7 LA PALMA (HUELVA)	(955)31.14.61	04
173	CALIZA	CEMENTOS ASLAND, S.A. Ctra. Bonares, s/nQ NIEBLA (HUELVA)	(955)36.30.71	06
175	ARCILLA	CERAMICA LAS MARISMAS Ctra. de Huelva, s/nΩ BOLLULLOS (HUELVA)	(955)41.00.45	09
176	ARCILLA	ANTONIO PADILLA Ctra. Sevilla-Huelva, s/nΩ LA PALMA (HUELVA)		09
177	ARENA	MANUEL HUELVA DOMINGUEZ C/ General Franco, 71 BEAS (HUELVA)	(955)30.81.88	03

PUNTO DE EXTRACCION	SUSTANCIA	EMPRESA Y DOMICILIO	TELEFONO	USC
178	ARENA	NATALIO GALLARDO, S.A. NERVA (HUELVA)		03
179	ARENA	MANUEL BANDA C/ Juan Ramón Jiménez, 9 ZALAMEA LA REAL (HUELVA)		03
180	ARENA	TALLERES VALDEAMIGO, S.A. Ctra. San Juan, s/nΩ VALVERDE DEL CAMINO (HUELVA)	(955)55.04.23	03
181	ARENA	TRANSPORTES Y ARIDOS MACIAS C/ Berrocal, s/nΩ VALVERDE DEL CAMINO (HUELVA)		03
183	ARENA	MARIN, S.A. TRIGUEROS (HUELVA		03
185	GRAVA	CONARISA, S.A. C/ Arjona, 10 SEVILLA	(95)522.58.73	03
186	GRAVA	JOSE DE LA ROSA VARGAS Plaza de la Constitutción, 16 BENACAZON (SEVILLA)	(95)570.54.41	03
188	ARCILLA	CERAMICAS DEL SUR, S.A. Ctra/ Sevilla-Huelva, s/nΩ CASTILLEJA (SEVILLA)		09
190	ARCILLA	CERAMICAS DEL SUR, S.A. Ctra. Sevilla-Huelva, s/nΩ CASTILLEJA (SEVILLA)		09
191	ARCILLA	FRANCISCO AVALOS ANDRADE Ctra. Sevilla-Huelva, s/nQ MANZANILLA (HUELVA)	(955)41.50.14	09
192	ARCILLA	CERAMICAS DEL SUR, S.A. Ctra. Sevilla-Huelva, s/nΩ CASTILLEJA (SEVILLA)		09
193	ARCILLA	ANTONIO LOPEZ GARCIA C/ Calzarería, 10 SANLUCAR (SEVILLA)	(95)471.02.87	09
197	ARCILLA	ANTONIO LOMBARDERO C/ Pasaje de Listoneros, s/nº SEVILLA		09

PUNTO DE EXTRACCION	SUSTANCIA	EMPRESA Y DOMICILIO	TELEFONO	USC
198	GRAVA	SANCHEZ DOMINGUEZ, S.A. Avda. Juan XXIII, 59 MALAGA	(952)15.24.21	04
200	GRAVA	CALA, S.A. C/ Blas Infante, 6 SEVILLA	(95)479.18.02	04
201	GRAVA	PIONEER CONCRETE, S.A. C/ Príncipe de Vergara, 43 MADRID	(91)577.41.59	04
202	GRAVA	COMSA, S.A. Avda. de Bonanza, 27 SEVILLA	(95)462.60.00	04
203	GRAVA	CORVIAM, S.A. C/ Zurbano, 76 MADRID	(91)442.75.00	04
205	GRAVA	DOMINGO DOMINGUEZ ESCUREDO C/ Arcos de la Sangre, 3 CARMONA (SEVILLA)		04
206	GRAVA	HUARTE Y CIA. MADRID		04
208	GRAVA	ARIDOS Y CANTERAS DEL SUR, S.A. Polígono Estores C/B, nº 4 SEVILLA		04
209	ARCILLA	ANTONIO LOMBARDERO E HIJOS C/ Pasaje Listoneros, s/nº SEVILLA		09
211	ARCILLA	ROISA, S.A. Avda. de Eriles, s/nΩ CAMAS (SEVILLA)		09
216	GRAVA	ANTONIO BERNAL E HIJOS C/ Capitán Barón, 9 SEVILLA	(95)463.51.30	04
217	GRAVA	HORMIGONES VALERA, S.A. DOS HERMANAS (SEVILLA)	(95)472.01.25	04
218	ALBERO	JOSE LOPEZ QUESADA C/ Montecamero, 3 ALCALA DE GUADAIRA (SEVILLA)	(95)561.32.41	03

PUNTO DE EXTRACCION	SUSTANCIA	EMPRESA Y DOMICILIO	TELEFONO	USO
219	ALBERO	HERMANOS SALGUERO, S.L. C/ Malasmañanas, 78 ALCALA DE GUADAIRA (SEVILLA)	(95)561.44.94	03
221	GRAVA	ARIDOS BORREGO, S.A. Ctra. C-443 Km. 12,5 ALCALA DEL RIO (SEVILLA)		04
222	GRAVA+ARENA	ARIAN, S.A. Polígono Barraquer, 12 SEVILLA	(95)437.01.91	04
223	ALBERO	HERMANOS SALGUERO, S.L. C/ Malasmañanas, 78 ALCALA DE GUADAIRA (SEVILLA)	(95)561.44.94	03

·

ANEXO IV LISTADO DE CENTROS DE TRANSFORMACION

CEMENTOS

JEMENTOS ASLAND, S.A. SEVILLA
(95) 445.64.45

FIBROTUBO

Ctra. Lopera, s/nº SEVILLA (95) 462.49.06

CEMENTOS DEL ATLANTICO Ctra. Sevilla-Málaga SEVILLA (95) 561.10.80

PROPANSA

Polígono La Chaparrilla, Parcela 53 SEVILLA (95) 467.51.24

CEMENTOS ASLAND, S.A. Ctra. Bonares, s/nº HUELVA (955) 36.30.31

CERAMICAS

CERAMICA CAMPOS
Plaza Vírgen del Socorro, 3
CAMAS (SEVILLA)
(95) 434.05.02

CERAMICA SANTA ISABEL

C/ Antillano del Campo, 9

SEVILLA

(95) 433.39.45

CERAMICA LA ESPERANZA

C/ Cuesta del Rosario, 8 SEVILLA (95) 421.53.20

CERAMICA DEL SUR

Queipo del Llano, 38 CASTILLEJA DEL CAMPO (SEVILLA) (95) 42.60.50

CERAMICA MALPESA

Ctra. Olivares, 8 SEVILLA (95) 411.80.07

GUADARTE, S.A.

Ctra. Sevilla-Málaga, Km. 13 SEVILLA (95) 410.12.67

CERAMICA LAS MARISMAS

C/ Huelva, s/nΩ BOLLULLOS (HUELVA) (955) 41.00.45

CERAMICA PADILLA

Ctra. Sevilla-Huelva, Km. 2 LA PALMA (HUELVA) (955) 40.08.42

CERAMICA LA ESPERANZA

BONARES (HUELVA) (955) 36.60.35

CERAMICA MARQUEZ

Avda. de Andalucía, 10 ARACENA (HUELVA) (955) !1.16.76 PEDRO BELTRAN
Plaza de España, 6
BONARES (HUELVA)
(955) 36.60.35

CERAMICAS GIBRALEON

Ctra. de Trigueros, km. 1 HUELVA (955) 30.01.89

AVALOS ANDRADE

C/ Benafique, 10 MANZANILLA (HUELVA) (955) 41.56.77

CABALLERO LEÑERO

C/ Jacinto Ramirez, 2 HUELVA (955) 30.81.34

CHORROS DE ARENA

FAST BLAST MADRID (91) 467.61.17

ESCAYOLAS

PREDESCA

Poligono Industrial Fuidex, Parcela 26 ALCALA DEL RIO (SEVILLA) (95) 433.07.85

HORMIGONES

PIONEER CONCRETE HISPANIA Ctra. de la Esclusa, s/n2 TABLADA (SEVILLA) (95) 445.20.30

HORMIGONES SAHOR Avda. Bonanza, 2 SEVILLA (95) 461.28.00

HORMIGONES CORIA

Avda. Blas Infante, 8

SEVILLA

(95) 424.41.02

HORMIGONES DEL SUR Ctra. Brenes, s/nΩ SEVILLA (95) 437.10.00

BETICA DE PREFABRICADOS Ctra. Los Palacios UTRERA (SEVILLA) (95) 586.00.00

PREFABRICADOS LABRADOR C/ Alcázar de Toledo, 56 TOMARES (SEVILLA) (95) 486.22.96

TUBERIAS TAVORA
Ctra. Sevilla-Madrid, Km. 534
SEVILLA
(95) 451.49.70

PREFABRICADOS LA CHOZA

C/ Huerta, s/nº ALCALA DEL RIO (SEVILLA) (95) 478.02.90

PREHOR

Autovía Corva-Sevilla, Km, 11,2 SEVILLA (95) 477.02.12

HORMIGONES GIRADO

Ctra. La Campana, s/nº SEVILLA (95) 479.16.30

HORMIGONES INDALILLO

Ctra. Sevilla, s/nΩ NERVA (HUELVA) (955) 58.03.26

PIEDRA NATURAL

MARMOLES CERROBLANCO

C/ Las Cruzadas, 31-C SEVILLA (95) 441.42.81

MARMOLES HERRERA

Avda. Sánchez Pizjuán, s/nº SEVILLA (95) 437.13.41

INDUSTRIAS DEL MARMOL

Ctra. Sevilla-Mérida, Km. 469 SEVILLA (95) 478.72.06

MARMOLES MAEVA

Ctra. Sevilla-Los Rosales SEVILLA (95) 479.04.71

C.I.P., S.L.

Poligono Industrial Alfarache

Parcela 65

SEVILLA

(95) 418.35.10

MARMOLES TOMARES

Ctra. Mairena, Km. 3
MAIRENA DE ALFARACHE (SEVILLA)
(95) 467.17.35

MARMOLES CARDENAS

Polígono Industrial El Pino, Nave 20 SEVILLA (95) 467.17.35

FERNANDEZ MONTERO, J.A.

C/ Comandante Redondo ARACENA (HUELVA) (955) 11.03.85

MARMOLES PARRALO

Camino Isla, 15 GIBRALEON (HUELVA) (955) 36.61.64

MARQUEZ MANZANO, C.M.

NERVA (HUELVA) (955) 58.11.12

GOMEZ BLANCO

C/ Isidoro Castilla, s/nΩ HUELVA (955) 19.01.22

MARMOLERA ONUBENSE, S.L.

C/ Bollullos del Condado, 6
BOLLULLOS DEL CONDADO (HULEVA)
(955) 24.24.60

MARMOLES B. UNCON

C/ Camino de la Vereda, $s/n\Omega$ BOLLULLOS DEL CONDADO (HUELVA) (955) 41.01.49

LOSETAS

LOSETAS MELLADO, S.L. C/ Manchón, 214 SEVILLA (95) 470.74.17

LADRILLOS REFRACTARIOS

ALFRAN, S.A. C/ Castilla, 163 SEVILLA (95) 433.29.47

COOPERATIVA LADRILLERA ARAHALENSE

Ctra. Sevilla-Málaga, Km. 57 EL ARAHAL (SEVILLA) (95) 484.03.90

PREFABRICADOS

PAVIMENTOS SUR, S.A.
Ctra. Sevilla-Málaga, Km. 75
SEVILLA
(95) 410.18.09

PAVIMENTOS TORRES, S.A. C/ Betis, s/nΩ LORA DEL RIO (SEVILLA) (95) 480.13.11

I.T.E.C.E.
Hacienda La Dolores
ALCALA DE GUADAIRA (SEVILLA)
(95) 470.40.15

JOSE HUERTAS
C/ Jesús Nazareno, 3
EL VISO DEL ALCOR (SEVILLA)
(95) 474.61.62

PRESUM

Apartado 3023 SEVILLA (95) 460.05.00

PREFABRICADOS Y CONTRATAS Ctra. Madrid-Cádiz, Km. 552 SEVILLA (95) 472.17.50

HORMIGONES Y ELECTRICIDAD
Ctra. Sevilla-Granada, s/nQ
ALCALA DE GUADAIRA (SEVILLA)
(95) 561.01.81

CERAMICA BELLAVISTAS
Ctra. Madrid-Cádiz, s/n

DOS HERMANAS (SEVILLA)

(95) 472. 87.02

VIDRIOS

VICASA
Plaza de Usera, 13
SEVILLA
(95) 421.14.84

YESOS

YESOS TORREBLANCA, S.L. C/ Torrelavega, 22 SEVILLA (95) 451.97.17

6 RESUMEN	Y CONCLUS	IONES

6.1. EXPLOTACIONES

En las hojas 1:200.000 de Puebla de Guzmán (nº 74) y Sevilla (nº 75), se han reconocido un total de 354 puntos, de los cuales se han inventariado 245 como lugares donde se ha realizado o se realiza alguna actividad de extracción, bien de forma intermitente o continuada. Se han dividido también otros 127 puntos, que suponen un 35,8% de los reconocidos, que no se han considerado importantes y, por tanto, no se han inventariado.

De las estaciones inventariadas, 61 están en activo, 32 trabajan de forma intermitente, 94 están paradas o abandonadas y 55 corresponden a indicios.

Si agrupamos las activas e intermitentes con respecto al total de las inventariadas, excluídos los indicios, se obtienen las activas que suponen el 50% del total.

SUSTANCIA	ACTIVOS	INACTIVOS	INTERMITENTES	INDICIOS
ALBERO	3	1	-	-
ARCILLA	15	23	4	1
ARENAS	3	7	11	-
ARENAS SIL.	-	-	-	4
CALIZAS	4	15	1	1
CAOLIN	-	1	-	_
CUARZO	-	3	-	1
DIABASA	2	2	-	1
ESCORIA	-	-	1	-
FLUORITA	-	1	_	
GRAFITO	-	1	-	4
GRANITO	7	14	2	3
GRAUWACA	1	4	1	_
GRAVAS	20	4	6	-
LAVAS PUZZ.	-	_	-	4
MINERALES	4	3	1	1
OCRES	-	-	-	4
PIROCLASTOS	-	-	-	5
PIZARRAS	-	2	1	5
PORFIDOS	1	-	-	-
RIOLITA	1	3	-	-
T.VOLCANICAS	_	2	-	-
WOLLASTONITA	-	_	-	9
ZAHORRA	-	5	4	_

6.2. SUSTANCIAS

En las hojas objeto de estudio se explotan las siguientes sustancias, tanto de forma continuada como intermitente:

- Albero - Escoria - Pizarra - Arcilla - Granito - Traquita - Arena - Grava - Zahorra

- Caliza - Esquisto - Diabasa - Mármol

Las sustancias que ha continuación se citan, se han explotado anteriormente, pero en la actualidad están paradas:

Caolín
 Cuarzo
 Fluorita
 Grafito
 Pórfidos
 Piroclastos

Sustancias de las que se han reconocido indicios, pero de las que no existe explotación alguna:

- Ocres
- Wollastonita.
- Arenas silíceas

6.3. CONCLUSIONES

- A excepción de las grandes canteras para áridos, propiedad de grupos constructores importantes, las explotaciones carecen de la más mínima base o infraestructura de investigación geológica.
- En general se puede afirmar que el grado de mecanización es adecuado.

- Con la excepción de las canteras a que se refiere el primer párrafo, la propiedad y gestión de las explotaciones es de carácter familiar o reducida.
- Todas las extracciones se realizan a cielo abierto.
- Con alguna excepción, no se llevan adelante los planes de restauración medio-ambiental.
- El uso de toda la producción de las explotaciones situadas en las bajas destinada a la construcción, en sentido amplio, pudiéndose subdividir en tres sectores: ornamentales y de construcción, áridos y arcilla estructural.
- Se ha señalado un litotecto para granitos ornamentales que ocupa los afloramientos de granitos y granodioritas de Santa Olalla del Cala.
- Igualmente se han señalado como litotectos de rocas para la construcción, los afloramientos graníticos de Gil-Marquez, Escalada, El Berrocal y Gerena.
- Para mármoles se han señalado dos litotectos, en Aroche y
 Los Marines respectivamente, aunque en toda la Sierra de
 Aracena son frecuentes las intercalaciones marmóreas, no se
 han cartografiado ni señalado como litotectos por su
 imposibilidad de representación en mapa dada la escala. En
 todo caso las posibilidades son altas, si se realizan los
 trabajos específicos que pongan de manifiesto las áreas y
 paquetes más interesantes.
- En cuanto a arcillas ceramicas comunes, se ha señalado un litotecto que abarca parte de los sedimentos terciarios de la Depresión del Guadalquivir, en los alrededores de Gibraleón, la Plama del Condado y Sanlúcar la Mayor.

- Se ha señalado un litotecto posible para arenas silíceas en la parte Sur de la Hoja de Sevilla sobre sedimentos terciarios. Aunque la analítica realizada es satisfactoria, dada la extensión del área y los cambios laterales de facies, harían falta trabajos mucho más específicos en contenido y escala, para delimitar con exactitud, y fiabilidad, las áreas favorables.
- Se ha señalado también un litotecto comprobado para albero, ubicado en los afloramientos de calcarenitas miocenas del suroeste de Sevilla, en la localidad de Alcala de Guadaira, donde estan ubicadas en la actualidad todas las canteras en activo de esta sustancia.
- Para áridos no se ha señaldo ningún litotecto puesto que las áreas de afloramiento son muy abundantes y las reservas muy altas.
- Para wollastonita se ha señalado un mineralotecto posible sobre la banda de calizas marmóreas cámbricas aflorantes al SO de Aroche.
- Las pizarras ornamentales puestas de manifiesto por Minas se consideran que es un indicio de Almagrera, material tanto por el COMO por el interesante, afloramiento. Para su extracción y comercialización, sin embargo no se señala ningún litotecto porque se entiende que la dificultad de la exploración en pizarras es alta, y además los afloramientos de pizarras son muy extensos, por lo que se deberán realizar trabajos específicos de detalle, como por ejemplo, estratigráficos y estructurales para delimitar áreas favorables.
- Similar planteamiento se puede realizar respecto del grafito, ya que por la abundacia de indicios y las numerosas referencias en la bibliografía geológica sobre la presencia de ésta sustancia, se deberán realizar trabajos

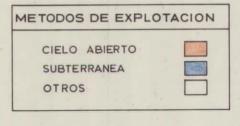
de detalle tales como: cartografías estructurales, estratigráficos, etc., que permitan la configuración de un modelo que como herramienta de trabajo, ponga de manifiesto el verdadero potencial minero del área en esta sustancia.

MAPA DE ROCAS Y MINERALES INDUSTRIALES E. 1:200.000

Instituto Tecnológico GeoMinero de España

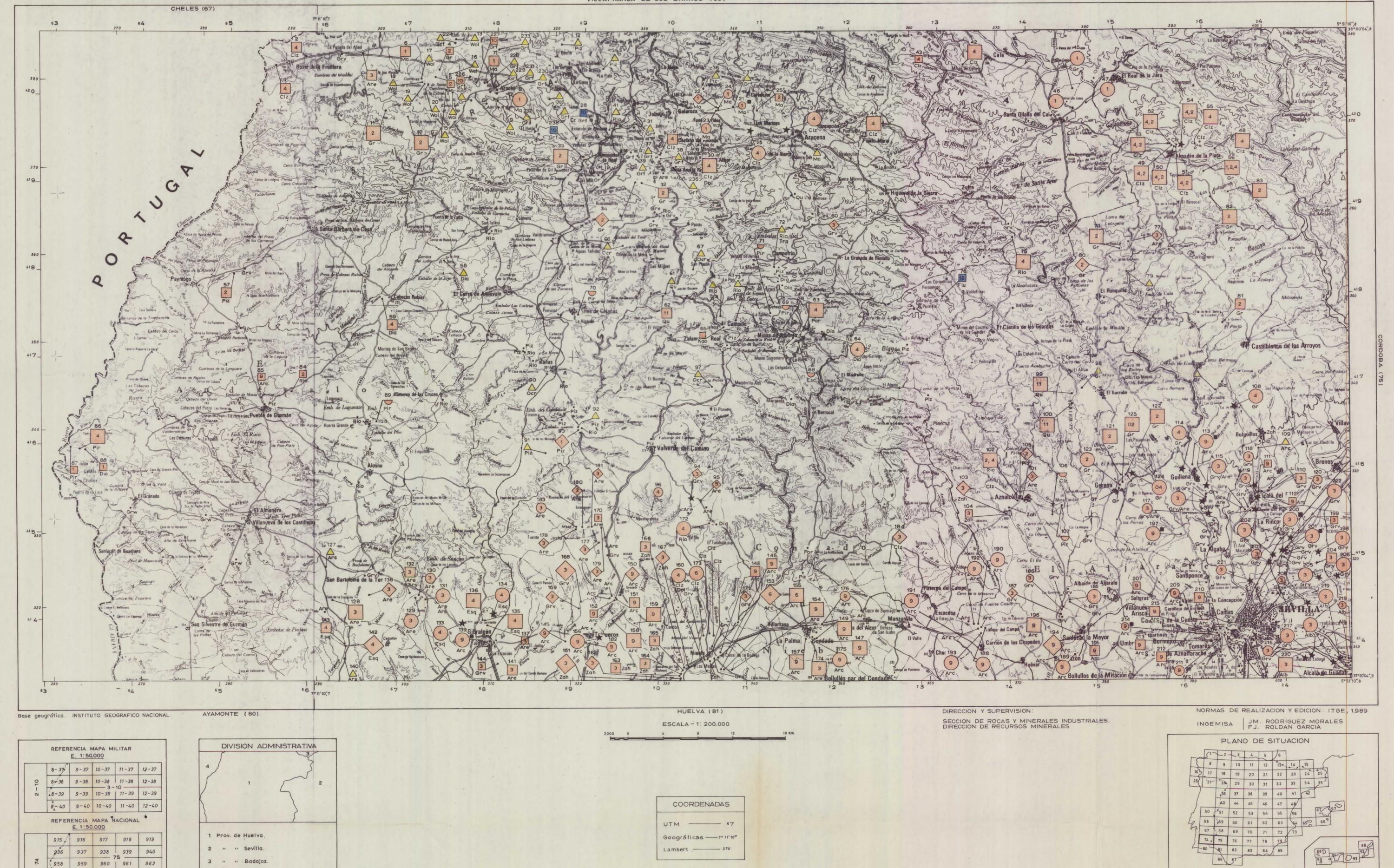
PUEBLA DE GUZMAN SEVILLA

SITUACION DE EXPLOTACIONES E INDICIOS


CODIG	OS DE S	USTANCIAS	
ALBERO	Alb	GRAFITO	Grf
ARCILLA	Arc	GRANITO	Gr
ARENA	Are	GRAVA	Grv
ARENA SILICEA	Ars	MARMOLES	Ма
CALIZA	Clz	OCRES	Ocr
CAOLIN	Као	PIROCLASTOS	Pir
CUARZO	Qu	PIZARRAS	Piz
DIABASA	Dia	PORFIDOS	Por
DOLOMIA	Dol	RIOLITA Y TRAQUITA	Rio,Tra
ESCORIA	Esc	WOLLASTONITA	Wol
ESQUISTO	Esq	ZAHORRA	Zah
FLUORITA	Flu		

	E INDIC	cios	
ACTIVA	-0	INDICIO	
INTERMITENTE	\rightarrow	DEPOSITO ARTIFICIAL	-0
INACTIVA		ESTACION DO	

TAMAÑO	DE LAS EXPLO	TACIONES	
PEQUEÑO	MEDIANO	GRANDE	
	0	\circ	
\Diamond	\Diamond	\Diamond	
		* -	


USO	No	USO	No
Rocas ornamentales	1 .	Vidrio	12
Rocas de construcción	2	Pigmentos	13
Aridos naturales	3	Industria química	14
Aridos de machaqueo	4	Abrasivos	15
Aridos ligeros	5	Cargas, filtros, absorbent.	16
Cementos	6	Agrícolas	17
Cales	7	Fundantes	18
Yesos	8	Arenas de moldeo	19
Cerámica Ladrillos y tejas	9	Aislantes	20
Refractarios	10	Minerales decorativos	21
Lozas y porcelanas	11	Otros	22

958 959 960 961 962

980 981 982 983 984

4 Portugal.

PUEBLA DE GUZMAN 74 2-10 MAPA DE ROCAS Y MINERALES INDUSTRIALES Instituto Tecnológico GeoMinero de España LEYENDA E. 1:200.000 SEVILLA 37 Aluviales, coluviales, derrubios, etc. gravas, arenas y arcillas. RECURSOS DEPRESION DEL GUADALQUIVIR VILLAFRANCA DE LOS BARROS (68) CHELES (67) 36 Gravas, arenas silíceas y limos. PLIOCUATERNARIO 35 Margas, limos y arenas siliceas. PLIOCENO 34 Arenas, limos y areniscas calcáreas amarillas. MESSINIENSE 33 Arcillas y/o margas azules. 32 Calcarenitas y areniscas calcáreas bioclásticas. 31 Arenas siliceas y gravas. ZONA SUR - PORTUGUESA 28 Volcanitas de carácter ácido-intermedio. Localmente básicas. TOUR. - VISEIEN. 27 Pizarras tobas y tufitas. 26 Volcanitas de composición básica. Localmente tobas DEVONICO 25 Pizarras, cuarcitas y grauvacas. Localm. volcanitas interestratific 24 Pizarras y cuarcitas. ZONA PULO DO LOBO 23 Filitas y cuarcitas. a) Antibolitas de Acebuches ZONA DE OSSA - MORENA J. MACIZO DE ARACENA CUÑA DE CORTEGANA-CUÑA DE FUENTEHERIDO 21 22 Neises cuarzo-feldespáticos. a) Calizas y mármoles. UNIDAD DEL CUBITO ORDOVICICO (?) 20 Esquistos, filitas y cuarzofilitas. a) Anfibolitas. UNIDAD DE CUMBRES 19 Flysch de filitas y areniscas. Localmente calizas (a) CARBONIFERO SILURICO - DEVONICO Pizarras y filitas. Localmente pasadas de areniscas, con-CAMBRICO - ORDOVICICO glomerados. Calizas (a), valcanitas ácidas y volc. básicas (b) UNIDAD DE HERRERIAS 15 Pizarras y grauvacas con lentejones de conglom. a) calizas. DEVONICO - CARBONIFERO 4 Pizarras, cuarcitas y conglomerados. ORDOVICICO 11 Calizas y dolomias con pizarras intercaladas. 10 Filitas, pizarras y cuarcitas con intercalaciones de calizas (a) y rocas ácidas y/o básicas (b). PRECAMBRICO (RIFEENSE) UNIDAD DE BENALIJA CAMBRICO - ORDOVICICO 8 Pizarras y cuarcitas. a) Calizas. 7 Pórtidos graníticos. 5 Granodioritas.a) Orientadas. ROCAS FILONIANAS 3 Gabros y diabasas. 2 Diques de cuarzo. ESQUEMA TECTONICO E. 1:1000000 DEPRESION DEL GUADALQUIVIR ZONA SUR-PORTUGUESA ZONA DE OSSA MORENA U. DE ARROYOMOLINOS AYAMONTE (80) HUELVA (81) NORMAS DE REALIZACION Y EDICION: ITGE, 1.989 DIRECCION Y SUPERVISION : U. DE BENALIJA INGEMISA JM. RODRIGUEZ MORALES FJ. ROLDAN GARCIA ESCALA - 1: 200.000 SECCION DE ROCAS Y MINERALES INDUSTRIALES. SIGNOS CONVENCIONALES DIRECCION DE RECURSOS MINERALES CODIGOS DE SUSTANCIAS 2000 0 4 8 12 PLANO DE SITUACION REFERENCIA MAPA MILITAR Litotecto o mineralotecto comprobado DIVISION ADMINISTRATIVA ARCILLA ESCORIA (Pir) E. 1 50 000 ARENA Litotecto o mineralotecto posible ----- Contacto discordante Rocas ornamentales ARENA SILICEA FLUORITA 8-37: 9-37 10-37 11-37 12-37 --- Contacto mecánico CALIZA Rocas de construcción 8=38 9-38 10-38 11-38 12-38 = Falla, Falla supuesta CAOLIN Industria química 27 28 29 30 31 32 33 (Qu) GRAVA WOLLASTONITA (Wol) CUARZO (Grv) N .8-39 9-39 10-39 11-39 12-39 Falla inversa Aridos de machaqueo Abrasivos (Dia) MARMOLES 8-40 9-40 10-40 11-40 12-40 Aridos ligeros 5 Cargas, filtros, absorbentes REFERENCIA MAPA NACIONAL Cementos 6 Agricolas ---- Tendido eléctrico E 1 50 000 Fundentes COORDENADAS + + Ferrocarril 1 Prov. de Huelva. 8 Arenas de moldeo Cerámica Ladrillos y tejas Pavim. y Revestim. UTM ---- 67 Minerales decorativos Geográficas - 7º 11' 10" 4 Portugal. Lambert ---- 370